PAGASA

Philippine Atmospheric, Geophysical and Astronomical Services Administration
"Pangasiwaan ng Pilipinas sa Serbisyong Atmosperiko, Heopisiko, at Astronomiko"
Agency overview
Formed December 8, 1972
Superseding agency
  • Weather Bureau
Jurisdiction Philippine Area of Responsibility (PAR)
Headquarters Science Garden, Agham Road, Diliman, Quezon City
14°38′37.1″N 121°2′39.8″E / 14.643639°N 121.044389°E / 14.643639; 121.044389
Agency executive
  • Vicente B. Malano, PhD[1], Administrator
Parent agency Department of Science and Technology
Website www.pagasa.dost.gov.ph

The Philippine Atmospheric, Geophysical and Astronomical Services Administration (Filipino: Pangasiwaan ng Pilipinas sa Serbisyong Atmosperiko, Heopisiko, at Astronomiko, abbreviated as PAGASA [pagˈasa], which means "hope" in the Tagalog word pag-asa) is the National Meteorological and Hydrological Services (NMHS) agency of the Republic of the Philippines mandated to provide protection against natural calamities and to insure the safety, well-being and economic security of all the people, and for the promotion of national progress by undertaking scientific and technological services in meteorology, hydrology, climatology, astronomy and other geophysical sciences. Created on December 8, 1972 by reorganizing the Weather Bureau, PAGASA now serves as one of the Scientific and Technological Services Institutes of the Department of Science and Technology

History

The Observatorio Meteorológico de Manila

Formal meteorological and astronomical services in the1321322 Philippines began in 1865 with the establishment of the Observatorio Meteorológico de Manila in Padre Faura St., Manila when Francisco Colina, a young Jesuit scholastic and professor at the Ateneo Municipal de Manila started a systematic observation and recording of the weather two or three times a day. Jaime Nonell, another Jesuit scholastic, wrote a brief treatise on these observations, which was printed by the Diario de Manila. The treatise attracted the attention of businessmen in Manila and a request was made to the Jesuit director, Fr. Juan Vidal, SJ, for regular observations for the purpose of warning the public against approaching typhoons. The businessmen financed the procurement and acquisition of an instrument called the Universal Meteorograph (an invention of another Jesuit, Fr. Angelo Seechi, SJ of the Vatican Observatory in Rome) which would greatly aid in the day and night observations of the weather.[2][3]

In 1866, Federico Faura, SJ, became the director of the Observatorio in recognition of scientific abilities. During this time, the Observatorio was engaged in the systematic observation of Philippine weather. On July 7, 1879, after data comparison with another Jesuit friar in the West Indies, the Observatorio issued a warning indicating that a tropical cyclone was crossing Northern Luzon. The colonial government took every possible precaution based on the reliability of the warning and the slight losses from the typhoon finally and permanently cemented the reputation of the Observatorio. This was followed by a prediction in November of the same year that a tropical cyclone will pass by Manila. The Observatorio began conducting seismological and terrestrial magnetism observations in 1880. In 1885, the Observatorio started time service and a system of visual (semaphore) weather warnings for merchant shipping. In 1886, the Faura Aneroid Barometer was released. In 1887, a section devoted to the study of terrestrial magnetism was set up and six years later, the first maps of terrestrial magnetism in the Philippines was published. In 1890, the seismological service was officially established, and in 1899, the astronomical section was opened.[2][3]

This reputation reached foreign shores and other observatories began requesting for the monthly Boletin del Observatorio de Manila. The growing demands for the services of the led Observatorio led to the issuance of a Royal Decree on April 21, 1894. This effectively recognized the Observatorio as an official institution under the Jesuit order, with full support from the Spanish crown. This led to the establishment of a network of secondary stations in various points of Luzon.[2][3]

American Period: The Weather Bureau

Under the Treaty of Paris,[4] on December 10, 1898, Spain ceded the Philippine Islands to the United States of America. After a period of great political turbulence that climaxed in the outbreak of Philippine-American War in 1899, an Insular Government was established. On May 22, 1901, the Philippine Commission enacted Act No. 131, reorganizing the Observatorio Meteorológico de Manila into the Weather Bureau under the Department of Interior. With the establishment of the Department of Agriculture and Natural Resources (DANR) on January 1, 1917, the Weather Bureau was transferred from the Department of Interior to DANR. With the establishment of the Commonwealth of the Philippines, the DANR was reorganized into the Department of Agriculture and Commerce.[2]

For nearly 45 years, the Weather Bureau remained active and famous in international expositions and scientific expeditions, and continued to be well known for its accurate typhoon forecasts and scientific works in the field of meteorology, geomagnetism, and astronomy. The first weather map in Far East (released in 1908 by Fr. Coronas) became an important tool in tropical cyclone forecasting thereon. The Bureau's published works on meteorology, terrestrial magnetism, and astronomy were well known and had later proven to be of great value to the American forces in the liberation of the Philippines from the Japanese during the Second World War.[2][3]

Second World War

On October 4, 1943, with the establishment of the Second Philippine Republic as a puppet state of Japan during its occupation, the Weather Bureau was transferred to the Department of Public Works and Communications. The Bureau was removed from the direction of the Jesuits and for the first time, the Bureau had an all-Filipino staff headed by Mr. Maximo Lachica, head of the Department of Geodetic Engineering of the University of the Philippines. The Japanese occupation period marked limited activity in the Central Office. However, in the field, Bureau personnel were instrumental in bringing accurate weather information over enemy-occupied territory to the combined liberation forces of the American and Filipino soldiers. On February 1945, the Second World War brought the operations of the Weather Bureau to a catastrophic halt when its offices were destroyed during the Battle of Manila. Nothing but the burnt-out shell of its astronomical dome in Padre Faura St, bore testimony to its once glorious past. All the instruments, records, mass of scientific knowledge accumulated through the decades were lost. After the war, the Observatorio ceased to function as the Weather Bureau. The former would later resume independent operations in 1951 as the Manila Observatory.[2][3]

Postwar Era (1945-1972): Rebirth

The rebirth of the Weather Bureau began on July 24, 1945 when it was reestablished by seven constituent personnel under the leadership of Edilberto Parulan as Officer-in-Charge. In 1946, pursuant to the Tydings War Damage Act (Philippine Rehabilitation Act of 1946), a US Weather Bureau mission was sent to Manila by the United States government to undertake a survey of the needs of the Weather Bureau. As a result, the Bureau was able to acquire meteorological equipment and technical assistance from the United States that paved the way for the establishment of standard weather services patterned after similar meteorological institutions in more technically-advanced countries. Furthermore, the Weather Bureau was transferred to the Department of Commerce and Industry. The Bureau's functions were then carried out by five divisions (Synoptic, Climatological, Geophysical, Astronomical, and Administrative).[2]

In 1947, the central office of the Weather Bureau was moved to Marsman Building (opposite Pier 15 at the Port Area of Manila), while the Forecasting Center was transferred to the old Balagbag terminal (site of the first terminal of the Manila International Airport) and became the Manila Main Meteorological Office (MMMO). The first post-war geophysical observatory of the Bureau was established in 1949 behind the campus of the University of the Philippines in Diliman. In 1948, a set of electromagnetic photorecording seismographs was installed in order to improve its seismological services. On April 5, 1949, the Philippines was admitted into the World Meteorological Organization (WMO), with the Weather Bureau as its National Meteorological Service.[2] In the same year, temperature, relative humility and pressure observations in the upper atmosphere were made twice daily by the Laoag, Cebu and Zamboanga field stations.

In 1950, a teletype service connected MMMO to Clark Air Force Base, US Naval Station Sangley Point and the Bureau of Telecommunications (precursor to the current National Telecommunications Commission (Philippines). Moreover, Exchange of weather reports with foreign countries, aircraft-in-flight and four aeronautical stations in the country – Laoag, Legazpi, Cebu & Zamboanga began at this year. Private radio systems and the then National Civil Defense Administration also helped to facilitate the reception of data and dissemination of the forecasts and warnings. In 1954, radio transmissions of time signals (which were done seven times daily) began in the geophysical observatory (which was now called Astronomical Observatory at this time).[2]

Weather surveillance radar was first installed in the Philippines in 1963 atop the Central Office of the Bureau (but this was destroyed beyond repair by a fire in 1978).In 1965, on its centenary, half of the weather stations across the country were already linked with each other by single side-band radio transceivers, forming an independent meteorological communication system. In 1968, the Philippines joined the Typhoon Committee formed by the Economic Commission for Asia and the Far East (ECAFE, now Economic and Social Commission for Asia and the Pacific or ESCAP) and the WMO.[5] The following year saw the transfer of the central office from the Marsman Building to 1424, Quezon Boulevard Extension in Quezon City. The same year also ushered the 5-year "WMO Training and Research Project, Manila". Composed of the Institute of Meteorology in the Weather Bureau and the Department of Meteorology in the University of the Philippines, the project aimed to meet the training needs of the country's meteorological personnel and to carry out research in various fields of meteorology. The Institute provided technical in-service training in various levels while the Department offered a post-graduate course leading to a Master of Science degree in Meteorology. With the implementation of the project, the acquisition of an IBM 1130 was realized and computerization in the Bureau came of age. A telemetry system in the Marikina River Basin was then set up which led to the Bureau's initial efforts in flood forecasting.[2]

Satellite meteorology came to the Philippines in 1970 when an Automatic Picture Transmission system was set-up to intercept phototransmission of the upper atmosphere by weather satellites. The first post-war major research initiative of the Bureau was launched in the same year. Called the "Typhoon Research Project, it was launched in 1970 was made possible through the financial assistance of the National Science Development Board. In 1971, upon invitation of the Philippines, the ECAFE/WMO Joint Unit was reallocated in Manila and was rechristened as the Typhoon Committee Secretariat. In the same year, the linking of five weather surveillance radars installed across different parts of the country and the Manila radar station (it was not yet destroyed until 1978) paved the way for the Weather Radar Surveillance Network of the Bureau.[2]

Marcos Era: From Weather Bureau to PAGASA

In 1972, at the height of Martial Law of President Ferdinand E. Marcos, the Weather Bureau was abolished and a new agency, the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) was established pursuant to the Atmospheric, Geophysical and Astronomical Science Act of 1972 (Presidential Decree No. 78, s. 1972) as part of the Integrated Reorganization Plan (Presidential Decree No. 1, s. 1972) of the Philippine Government. This new agency was placed under the authority of the Department of National Defense (DND).[6]

Four organization units initially comprised PAGASA. The National Weather Service undertakes the preparation and subsequent prompt issuance of forecasts and warnings of weather and flood conditions. The National Atmospheric, Geophysical and Astronomical Data Service undertakes the acquisition, collection, quality control, processing, and archiving of atmospheric and allied data. The National Geophysical and Astronomical Service undertakes observations and studies of seismological and astronomical phenomena, as well as provides the official time for the country. The National Institute of Atmospheric, Geophysical and Astronomical Sciences is responsible for the training of scientists and technical personnel with respect to atmospheric, geophysical and astronomical sciences. In 1977, the Typhoon Moderation Research and Development Office and the National Flood Forecasting Office were placed under administrative supervision of PAGASA, pursuant to Presidential Decree No. 1149, s. 1977.[7]

PAGASA saw a lot of accomplishments during the Marcos Era. In 1973, the Pampanga River Basin Flood Forecasting and Warning Project, a joint undertaking of the PAGASA and the Ministry of Public Works, Transportation and Communications, was inaugurated, and upon recommendations of a survey mission, the Japanese Government provided the equipment and training of personnel for the project. Early in 1974, PAGASA, in cooperation with the Office of Civil Defense, put up a radio station with callsign DZCA. Through a network of automatic stations situated at strategic points along the Pampanga River and its major tributaries, data on the rise and fall of the river levels are sent to the Flood Forecasting Center in the Central Office via existing telemetry system. Impressed with the success of the Flood Forecasting System in the Pampanga River Basin, President Marcos instructed PAGASA to explore the possibility of putting up a similar system in the Agno, Bicol and Cagayan River Basins.The UNESCO-sponsored Regional Seismological Network in Southeast Asia set up an office in the PAGASA Geophysical Observatory in 1974. It sought to standardize the training of personnel and seismological equipment, as well as to improve the accuracy of determining the epicenters of earthquakes in the region. Subsequently, in 1977, a strong motion accelerograph network was put up in Metro Manila. The network was designed to record strong earthquake vibrations in the area. On April 18, 1979, the Science Garden Planetarium was opened to the public. Equipped with a Minolta planetarium projector, it has a seating capacity of 90 people. In June 1981, the Bicol flood forecasting sub-system based on the Pampanga River system was inaugurated. In May of the following year, all three sub-systems (Agno, Bicol and Cagayan) became fully operational. On the same occasion, the Ground Receiving Station for the Geostationary Meteorological Satellite was inaugurated, bringing the satellite meteorology of the Philippines to a giant leap forward.

In April 1983, Flood Forecasting and Warning System for Dam Operations was jointly undertaken by PAGASA, National Power Corporation, and National Irrigation Administration, with financial assistance in the form of loans from the Japanese Government. Phase 1 of the project covered Angat and Pantabangan Dams, while Phase II covered the Magat, Binga, and Ambuklao Dams, as well as the Data Information Center for the project.

The subsequent efforts of the government to centrally direct the integration of all government scientific and technological efforts led to the transfer of PAGASA to the National Science and Technology Authority through Executive Order No. 984, s. 1984.[8] The reorganization also transferred the seismological services of PAGASA to the Philippine Institute of Volcanology (PHIVOLC), now Philippine Institute of Volcanology and Seismology (PHIVOLCS).[9]

Post-1986: PAGASA Today

Following the reestablishment of the democratic government after the ouster of Ferdinand Marcos (see People Power Revolution) in 1986, President Corazon C. Aquino ordered the reorganization of the National Science and Technology Authority (now called Department of Science and Technology) and all agencies under its authority, pursuant to Executive Order 128, s. 1987[10] Five major branches (Weather, Flood Forecasting, Climatology & Agrometeorology, Astronomical, Geophysical & Space Science, and National Disaster Reduction) and three support divisions (Administrative, Finance & Management, and Engineering & Maintenance) now constitute PAGASA. This organizational structure remained until October 2008, when the agency went under a Rationalization Program pursuant to Executive Order 366, s. 2004 issued by President Gloria Macapagal-Arroyo.[11] The Rationalization Program of the government was aimed at making the government focus its efforts on vital/core functions and enhance effectiveness and efficiency of public service.[2]

On January 15, 2003, PAGASA transferred its Central Office from 1424 Quezon Avenue to its permanent headquarters at the Science Garden, located along Agham Road in Diliman, Quezon City. Meanwhile, scientific and technical operations are currently being undertaken in its Weather and Flood Forecasting Center, a facility located just in front of its current headquarters.[2]

On November 3, 2015, Republic Act No. 10692, or the PAGASA Modernization Act of 2015 was signed into law by President Benigno Aquino III. The government will initially spend three billion pesos from the PAGCOR revenues (with a three-year span) for the modernization fund of the state weather bureau, that includes the upgrading and acquisition of equipment, new salary scheme for the employees, manpower training for future weathercasters and the creation of PAGASA Data Center, among other plans.[12]

Tropical cyclones

The Philippine Area of Responsibility (PAR) for tropical cyclone warnings

PAGASA monitors tropical cyclone activity and issues warnings if they fall within the Philippine Area of Responsibility or PAR. This area is bound by an imaginary line drawn along the following coordinates:

25°N 120°E, 25°N 135°E, 5°N 135°E, 5°N 115°E, 15°N 115°E, 21°N 120°E and back to the beginning.[13]

Tropical cyclone bulletins are issued by PAGASA every six hours for all tropical cyclones within this area that have or are anticipated to make landfall within the Philippines, or twelve hours when cyclones are not affecting land.

As of May 20, 2015, PAGASA used to classify tropical cyclones into five categories:

Tornadoes

On August 27, 2007, PAGASA announced that it was putting up a tornado warning system, days after several more powerful and destructive tornadoes damaged houses in Central Luzon, the monsoon and climate change. On August 23, 2007, a 2nd tornado destroyed 30 houses in 4 villages in San Miguel, Bulacan, the first having damaged 27 houses in San Rafael on Aug. 8.[15]

However, as of present time, the weather bureau has yet to provide such warnings.

Climatology

The climate of the Philippines is discussed in detail on the Climatology page of the PAGASA website.

PAGASA lists patterns of temperature, humidity, rainfall, seasons, and four climate Types, for the Philippines.

Climate Types are:

Criticism

On August 6, 2010, President Benigno Aquino III announced the removal of Prisco Nilo as the administrator of PAGASA. PAGASA was directly under Department of Science and Technology (DOST) Undersecretary for Research and Development (R&D) Graciano Yumul.[16] A special order from DOST Secretary Mario Montejo, dated August 5, 2010, designated Yumul as the new PAGASA administrator. Nilo was criticized for lack of modern equipment, forecast inaccuracies, slow voluntary response and the aftermath of Typhoon Ondoy in September 2009, and Typhoon Basyang in July 2010.

Doppler weather radar, weather stations and other equipment

PAGASA installed its first Doppler weather radar station in Baler, Aurora and another in Baguio. The new weather radars can monitor the typhoon and its movements, amount of rainfall either moderate or heavy and real-time atmospheric forecasts using a visual radar monitor, an example was that of Typhoon Basyang in 2010. Data are used for warnings (such as rainfall) through Project NOAH since June 2012.

Location of Doppler weather radar installations in the Philippines.
Black circles: Operational
Red circles: Not in operation due to structural damage
Green circles: Currently under construction
Blue circles: Proposed new radar locations

PAGASA has installed at least ten Doppler weather radars in the country, currently operational stations are as follows:

Moreover, the weather bureau is now constructing four to five more Doppler weather radar stations in Busuanga and Quezon (both in Palawan), Iloilo, Zamboanga City,[17] and Basco (Batanes). It aims to have thirteen operational radar stations nationwide by the end of 2013.[18]

Before Nilo's leave, an automated rain gauge was also installed in a telecommunications cellsite in Montalban, Rizal (in cooperation with Smart Communications) to monitor excess rainfall as a warning signal to avert the effects of flashfloods and landslides by using cellphones, the weather bureau plans to adopt its swift transfer of data from ground forecasting stations to main headquarters utilizing its automated data acquisition system modeled after Japan Meteorological Agency's AMeDAS in the near future as a solution to forecast inaccuracy and their problems. The Japan International Cooperation Agency will provide modernization programs to enhance the services of PAGASA include meteorology and flood forecasting, and tornado warnings as precautionary measures. Seven new Doppler weather radars placed in different locations are scheduled to operate in June 2011.

In addition, the weather bureau introduced its Landslide Early Warning Sensor (LEWS) (recently invented by the University of the Philippines) to reduce landslide casualties in case of landslides. Using this new device, the sensor picks out signals in the form of computer data to show soil and ground movements and is transferred to the ground station immediately in an event of a landslide, and in order to launch forced evacuation. PAGASA hopes to install 10 sensors in five landslide prone areas by 2012, when it is tested and ready to bury on ground.

Another innovation to flood alerts was the adoption of an Automated Weather Station (AWS) designed to monitor amounts of rainfall and flood levels in case of an incoming warning, the AWS can be controlled by a computer even it is unmanned and a siren to evacuate people for emergencies. Few of the AWS units are installed in few points of the country and many more units will be installed to extend its coverage.

In 2011, Taiwan donated fifteen weather stations to the Philippines' Department of Science and Technology, and it has been reported that "The Philippines weather bureau will also share information from the new weather stations with Taiwan's Central Weather Bureau, helping expand the range of Taiwan's weather forecasts."[19] PAGASA and the Philippines Department of Science and Technology work jointly in the implementation of weather stations.[20]

See also

References

  1. "LIST: Duterte appointees who took oath on Sept 12, 2016". Rappler. 12 September 2016. Retrieved 13 September 2016.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Template:Cite wedffgkjhuykguyghb
  3. 1 2 3 4 5 "History". Manila Observatory. Manila Observatory. Retrieved 28 September 2015.
  4. "Treaty of Peace Between the United States and Spain; December 10, 1898". The Avalon Project. New Haven, Connecticut: Lillian Goldman Law Library, Yale Law School. 2008. Retrieved 2014-06-15.
  5. "The Committee Chronology - 1964-1968". Typhoon Committee. ESCAP/WMO Typhoon Committee.
  6. "Presidential Decree No. 78, s. 1972". The Official Gazette of the Republic of the Philippines. Malacañang Records Office. Retrieved 28 September 2015.
  7. "Presidential Decree No. 1149 s. 1977". The Official Gazette of the Republic of the Philippines. Malacañang Records Office. Retrieved 28 September 2015.
  8. "Executive Order 984, s. 1984". The Official Gazette of the Republic of the Philippines. Malacañang Records Office. Retrieved 28 September 2015.
  9. "About PHIVOLCS". Philippine Institute of Volcanology and Seismology. Philippine Institute of Volcanology and Seismology. Retrieved 28 September 2015.
  10. "Executive Order No. 128, s. 1987". The Official Gazette of the Republic of the Philippines. Presidential Management Staff. Retrieved 1 October 2015.
  11. "Executive Order No. 366, s. 2004" (PDF). DBM - Department of Budget and Management. Department of Budget and Management. Retrieved 1 October 2015.
  12. Casayuran, Mario (2015-11-08). "Gov't to spend P3B for PAGASA modernization, salary hike". Manila Bulletin. Archived from the original on 2016-01-14. Retrieved 2015-11-09.
  13. "World Meteorological Organization - WMO" (PDF). World Meteorological Organization. Retrieved 2013-08-22.
  14. Locsin, Joel (November 1, 2014). "For improved response? PAGASA to adopt 'super typhoon' category in 2015". GMA News Online. Retrieved 2 November 2014.
  15. "PAGASA to put up tornado warning system". GMA News Online. 2007-08-07. Retrieved 2014-02-15.
  16. "Aquino sacks PAGASA chief". GMA News Online. 2010-08-06. Retrieved 2014-02-15.
  17. "Weather bureau to install Doppler Radar". Sun.Star. 2012-01-11. Retrieved 2014-02-15.
  18. Teves, Catherine (2012-03-24). "PAGASA to install more radars this year —— Bayanihan". Bayanihan. Retrieved 2013-08-22.
  19. "Philippines activates 15 weather stations donated by Taiwan". Wantchinatimes.com (English news website of the Taiwan-based China Times News Group). September 17, 2011. Retrieved January 16, 2012.
  20. "Launching of Automated Weather Station". Philippines Atmospheric, Geophysical and Astronomical Services Administration. June 30, 2011. Retrieved January 16, 2012.

External links

This article is issued from Wikipedia - version of the 12/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.