Landau–Lifshitz model

For another Landau–Lifshitz equation describing magnetism, see Landau–Lifshitz–Gilbert equation.

In solid-state physics, the Landau–Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a partial differential equation describing time evolution of magnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables.

Landau–Lifshitz equation

The LLE describes an anisotropic magnet. The equation is described in (Faddeev & Takhtajan 2007, chapter 8) as follows: It is an equation for a vector field S, in other words a function on R1+n taking values in R3. The equation depends on a fixed symmetric 3 by 3 matrix J, usually assumed to be diagonal; that is, . It is given by Hamilton's equation of motion for the Hamiltonian

(where J(S) is the quadratic form of J applied to the vector S) which is

In 1+1 dimensions this equation is

In 2+1 dimensions this equation takes the form

which is the (2+1)-dimensional LLE. For the (3+1)-dimensional case LLE looks like

Integrable reductions

In general case LLE (2) is nonintegrable. But it admits the two integrable reductions:

a) in the 1+1 dimensions, that is Eq. (3), it is integrable
b) when . In this case the (1+1)-dimensional LLE (3) turns into the continuous classical Heisenberg ferromagnet equation (see e.g. Heisenberg model (classical)) which is already integrable.

See also

References

This article is issued from Wikipedia - version of the 7/30/2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.