Cobalt-59 nuclear magnetic resonance

Cobalt-59 nuclear magnetic resonance is a form of nuclear magnetic resonance spectroscopy that uses cobalt-59, a cobalt isotope. 59Co is a nucleus of spin 7/2 and 100% abundancy.[1] The nucleus has a magnetic quadrupole moment. Among all NMR active nuclei, 59Co has the largest chemical shift range and the chemical shift can be correlated with the spectrochemical series.[2] Resonances are observed over a range of 20000 ppm, the width of the signals being up to 20 kHz. A widely used standard is potassium hexacyanocobaltate (0.1M K3Co(CN)6 in D2O), which, due to its high symmetry, has a rather small line width. Systems of low symmetry can yield broadened signals to an extent that renders the signals unobservable in fluid phase NMR, in these cases signals can still be observable in solid state NMR.

References

  1. Chan, J; Auyeung, S (2000). Webb, GA, ed. "Annual Reports on NMR Spectroscopy". 41. Elsevier: 1–54. doi:10.1016/S0066-4103(00)41008-2. ISBN 978-0-12-505341-9. |chapter= ignored (help)
  2. Yamasaki, A (1991). "Cobalt-59 Nuclear Magnetic Resonance Spectroscopy in Coordination Chemistry". Journal of Coordination Chemistry. 24 (3): 211. doi:10.1080/00958979109407886.
This article is issued from Wikipedia - version of the 3/8/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.