X-wave
In physics, X-waves are localized solutions of the wave equation that travel at a constant velocity in a given direction. X-waves can be sound, electromagnetic, or gravitational waves. They are built as a non-monochromatic superposition of Bessel beams. Ideal X-waves carry infinite energy, but finite-energy realizations have been observed in various frameworks. Electromagnetic X-waves travel faster than the speed of light, and X-wave pulses can have superluminal phase and group velocity.[1]
In optics, X-waves solution have been reported within a quantum mechanical formulation.[2]
See also
References
- ↑ Bowlan, Pamela; Valtna-Lukner, Heli; et al. (December 2009). "Measurement of the spatiotemporal electric field of ultrashort superluminal Bessel-X pulses". Optics and Photonics News. 20 (12): 42.
- ↑ A. Ciattoni and C. Conti, Quantum electromagnetic X-waves arxiv.org 0704.0442v1.
- J. Lu and J. F. Greenleaf, "Nondiffracting X waves: exact solutions to free-space scalar wave equation and their infinite realizations", IEEE Trans. Ultrasonic Ferroelectric Frequency. Control 39, 19–31 (1992).
- Erasmo Recami and Michel Zamboni-Rached and Hugo E. Hernandez-Figueroa, "Localized waves: A scientific and historical introduction" arxiv.org 0708.1655v2.
- Various authors in the book Localized Waves edited by Erasmo Recami, Michel Zamboni-Rached and Hugo E. Hernandez-Figueroa
External links
- The Virtual Institute for Nonlinear Optics (VINO), a research collaboration devoted to the investigation of X-waves and conical waves in general
- Nolinear X-waves page at the nlo.phys.uniroma1.it website.
This article is issued from Wikipedia - version of the 9/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.