Witt vector cohomology

In mathematics, Witt vector cohmology was an early p-adic cohomology theory for algebraic varieties introduced by Serre (1958). Serre constructed it by defining a sheaf of truncated Witt rings Wn over a variety V and then taking the inverse limit of the sheaf cohomology groups Hi(V, Wn) of these sheaves. Serre observed that though it gives cohomology groups over a field of characteristic 0, it cannot be a Weil cohomology theory because the cohomology groups vanish when i > dim(V). For Abelian varieties Serre (1958b) showed that one could obtain a reasonable first cohomology group by taking the direct sum of the Witt vector cohomology and the Tate module of the Picard variety.

References

This article is issued from Wikipedia - version of the 9/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.