Weyl−Lewis−Papapetrou coordinates
General relativity | ||||||
---|---|---|---|---|---|---|
Fundamental concepts |
||||||
|
||||||
In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, T. Lewis, and Achilles Papapetrou.
The square of the line element is of the form:[1]
where (t, ρ, ϕ, z) are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.
See also
- Introduction to the mathematics of general relativity
- Stress–energy tensor
- Metric tensor (general relativity)
- Relativistic angular momentum
References
- ↑ Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0.
Selected papers
- J. Marek; A. Sloane (1979). "A finite rotating body in general relativity". Il Nuovo Cimento B Series 11. 51 (1). pp. 45–52.
- L. Richterek; J. Novotny; J. Horsky (2002). "Einstein−Maxwell fields generated from the gamma-metric and their limits" (PDF). Czech.J.Phys. 52. p. 2. arXiv:gr-qc/0209094v1. doi:10.1023/A:1020581415399.
- M. Sharif (2007). "Energy-Momentum Distribution of the Weyl−Lewis−Papapetrou and the Levi-Civita Metrics" (PDF). Brazilian Journal of Physics. 37.
- A. Sloane (1978). "The axially symmetric stationary vacuum field equations in Einstein's theory of general relativity". Aust. J. Phys. 31. CSIRO. p. 429. Bibcode:1978AuJPh..31..427S.
Selected books
- J. L. Friedman; N. Stergioulas (2013). Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press. p. 151. ISBN 052-187-254-5.
- A. Macías; J. L. Cervantes-Cota; C. Lämmerzahl (2001). Exact Solutions and Scalar Fields in Gravity: Recent Developments. Springer. p. 39. ISBN 030-646-618-X.
- A. Das; A. DeBenedictis (2012). The General Theory of Relativity: A Mathematical Exposition. Springer. p. 317. ISBN 146-143-658-3.
- G. S. Hall; J. R. Pulham (1996). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995. SUSSP proceedings. 46. Scottish Universities Summer School in Physics. pp. 65, 73, 78. ISBN 075-030-395-6.
This article is issued from Wikipedia - version of the 11/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.