Supersolvable group

In mathematics, a group is supersolvable (or supersoluble) if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

Definition

Let G be a group. G is supersolvable if there exists a normal series

such that each quotient group is cyclic and each is normal in .

By contrast, for a solvable group the definition requires each quotient to be abelian. In another direction, a polycyclic group must have a normal series with each quotient cyclic, but there is no requirement that each be normal in . As every finite solvable group is polycyclic, this can be seen as one of the key differences between the definitions. For a concrete example, the alternating group on four points, , is solvable but not supersolvable.

Basic Properties

Some facts about supersolvable groups:

References


This article is issued from Wikipedia - version of the 11/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.