Sub-Gaussian random variable
In probability theory, a sub-Gaussian random variable is a random variable with strong tail decay property. Informally, the tails of a sub-Gaussian random variable are dominated by (i.e. decay at least as fast as) the tails of a Gaussian.
Formally, is called sub-Gaussian if there are positive constants such that for any :
The sub-Gaussian random variables with the following norm:
form a Birnbaum–Orlicz space.
Equivalent properties
The following properties are equivalent:
- is sub-Gaussian
- -condition: .
- Laplace transform condition: .
- Moment condition: .
References
- Kahane, J.P. (1960). "Propriétés locales des fonctions à séries de Fourier aléatoires". Stud. Math. 19. pp. 1–25. .
- Buldygin, V.V.; Kozachenko, Yu.V. (1980). "Sub-Gaussian random variables". Ukrainian Math. J. 32. pp. 483–489. .
- Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach Spaces. Springer-Verlag.
- Stromberg, K.R. (1994). Probability for Analysts. Chapman & Hall/CRC.
- Litvak, A.E.; Pajor, A.; Rudelson, M.; Tomczak-Jaegermann, N. (2005). "Smallest singular value of random matrices and geometry of random polytopes". Adv. Math. 195. pp. 491–523. PDF.
- Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990. PDF.
- Rivasplata, O. (2012). "Subgaussian random variables: An expository note". Unpublished. PDF.
This article is issued from Wikipedia - version of the 10/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.