Monocarboxylate transporter 5
Monocarboxylate transporter 5 is a protein that in humans is encoded by the SLC16A4 gene.[3][4]
See also
References
Further reading
- Halestrap AP, Price NT (October 1999). "The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation". The Biochemical Journal. 343 Pt 2 (2): 281–99. doi:10.1042/0264-6021:3430281. PMC 1220552. PMID 10510291.
- Halestrap AP, Meredith D (February 2004). "The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond". Pflügers Archiv. 447 (5): 619–28. doi:10.1007/s00424-003-1067-2. PMID 12739169.
- Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1-2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1-2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Pilegaard H, Terzis G, Halestrap A, Juel C (May 1999). "Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle". The American Journal of Physiology. 276 (5 Pt 1): E843–8. PMID 10329977.
- Manning Fox JE, Meredith D, Halestrap AP (December 2000). "Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle". The Journal of Physiology. 529 Pt 2 (2): 285–93. doi:10.1111/j.1469-7793.2000.00285.x. PMC 2270204. PMID 11101640.
- Philp NJ, Wang D, Yoon H, Hjelmeland LM (April 2003). "Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells". Investigative Ophthalmology & Visual Science. 44 (4): 1716–21. doi:10.1167/iovs.02-0287. PMID 12657613.
- Juel C, Holten MK, Dela F (April 2004). "Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans". The Journal of Physiology. 556 (Pt 1): 297–304. doi:10.1113/jphysiol.2003.058222. PMC 1664883. PMID 14724187.
- Settle P, Mynett K, Speake P, Champion E, Doughty IM, Sibley CP, D'Souza SW, Glazier J (July 2004). "Polarized lactate transporter activity and expression in the syncytiotrophoblast of the term human placenta". Placenta. 25 (6): 496–504. doi:10.1016/j.placenta.2003.11.009. PMID 15135232.
- Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP (July 2005). "Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)". The Journal of Biological Chemistry. 280 (29): 27213–21. doi:10.1074/jbc.M411950200. PMID 15917240.
- Merezhinskaya N, Ogunwuyi SA, Fishbein WN (February 2006). "Expression of monocarboxylate transporter 4 in human platelets, leukocytes, and tissues assessed by antibodies raised against terminal versus pre-terminal peptides". Molecular Genetics and Metabolism. 87 (2): 152–61. doi:10.1016/j.ymgme.2005.09.029. PMID 16403666.
- Bickham DC, Bentley DJ, Le Rossignol PF, Cameron-Smith D (April 2006). "The effects of short-term sprint training on MCT expression in moderately endurance-trained runners". European Journal of Applied Physiology. 96 (6): 636–43. doi:10.1007/s00421-005-0100-x. PMID 16408234.
- Ullah MS, Davies AJ, Halestrap AP (April 2006). "The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism". The Journal of Biological Chemistry. 281 (14): 9030–7. doi:10.1074/jbc.M511397200. PMID 16452478.
- Bishop D, Edge J, Thomas C, Mercier J (February 2007). "High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle". Journal of Applied Physiology. 102 (2): 616–21. doi:10.1152/japplphysiol.00590.2006. PMID 17082373.
|
---|
|
By group |
---|
| SLC1–10 |
---|
| (1): | |
---|
| (2): | |
---|
| (3): | |
---|
| (4): | |
---|
| (5): | |
---|
| (6): | |
---|
| (7): | |
---|
| (8): | |
---|
| (9): | |
---|
| (10): | |
---|
|
| | SLC11–20 |
---|
| (11): |
- proton coupled metal ion transporter
|
---|
| (12): | |
---|
| (13): |
- human Na+-sulfate/carboxylate cotransporter
|
---|
| (14): | |
---|
| (15): |
- proton oligopeptide cotransporter
|
---|
| (16): |
- monocarboxylate transporter
|
---|
| (17): | |
---|
| (18): | |
---|
| (19): | |
---|
| (20): | |
---|
|
| | SLC21–30 |
---|
| (21): | |
---|
| (22): | |
---|
| (23): |
- Na+-dependent ascorbic acid transporter
|
---|
| (24): | |
---|
| (25): | |
---|
| (26): |
- multifunctional anion exchanger
|
---|
| (27): | |
---|
| (28): |
- Na+-coupled nucleoside transport (SLC28A1
|
---|
| (29): |
- facilitative nucleoside transporter
|
---|
| (30): | |
---|
|
| | SLC31–40 |
---|
| (31): | |
---|
| (32): | |
---|
| (33): | |
---|
| (34): |
- type II Na+-phosphate cotransporter
|
---|
| (35): |
- nucleoside-sugar transporter
-
-
-
-
- SLC35E1
- SLC35E2
- SLC35E3
- SLC35E4
|
---|
| (36): |
- proton-coupled amino-acid transporter
|
---|
| (37): |
- sugar-phosphate/phosphate exchanger
|
---|
| (38): |
- System A & N, sodium-coupled neutral amino-acid transporter
|
---|
| (39): | |
---|
| (40): |
- basolateral iron transporter
|
---|
|
| | SLC41–48 |
---|
| (41): | |
---|
| (42): | |
---|
| (43): |
- Na+-independent, system-L like amino-acid transporter
|
---|
| (44): | |
---|
| (45): |
- Putative sugar transporter
|
---|
| (46): | |
---|
| (47): | |
---|
| (48): | |
---|
|
| | |
|
|
|
|
|
see also solute carrier disorders |