Ramanujan graph

In spectral graph theory, a Ramanujan graph, named after Srinivasa Ramanujan, is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders.

Examples of Ramanujan graphs include the clique, the biclique , and the Petersen graph. As Murty's survey paper notes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". As observed by Toshikazu Sunada, a regular graph is Ramanujan if and only if its Ihara zeta function satisfies an analog of the Riemann hypothesis.[1]

Definition

Let be a connected -regular graph with vertices, and let be the eigenvalues of the adjacency matrix of . Because is connected and -regular, its eigenvalues satisfy . Whenever there exists with , define

A -regular graph is a Ramanujan graph if .

A Ramanujan graph is characterized as a regular graph whose Ihara zeta function satisfies an analogue of the Riemann Hypothesis.

Extremality of Ramanujan graphs

For a fixed and large , the -regular, -vertex Ramanujan graphs nearly minimize . If is a -regular graph with diameter , a theorem due to Nilli[2] states

Whenever is -regular and connected on at least three vertices, , and therefore . Let be the set of all connected -regular graphs with at least vertices. Because the minimum diameter of graphs in approaches infinity for fixed and increasing , Nilli's theorem implies an earlier theorem of Alon and Boppana which states

Constructions

Constructions of Ramanujan graphs are often algebraic.

References

  1. Audrey Terras, Zeta Functions of Graphs: A Stroll through the Garden, volume 128, Cambridge Studies in Advanced Mathematics, Cambridge University Press, (2010).
  2. A Nilli, On the second eigenualue of a graph, Discrete Mathematics 91 (1991) pp. 207-210.
  3. Alexander Lubotzky; Ralph Phillips; Peter Sarnak (1988). "Ramanujan graphs". Combinatorica. 8 (3): 261–277. doi:10.1007/BF02126799.
  4. Moshe Morgenstern (1994). "Existence and Explicit Constructions of q+1 Regular Ramanujan Graphs for Every Prime Power q". J. Combinatorial Theory, Series B. 62: 44–62. doi:10.1006/jctb.1994.1054.
  5. Adam Marcus; Daniel Spielman; Nikhil Srivastava (2013). Interlacing families I: Bipartite Ramanujan graphs of all degrees. Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium.
  6. Adam Marcus; Daniel Spielman; Nikhil Srivastava (2015). Interlacing families IV: Bipartite Ramanujan graphs of all sizes. Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium.

External links

This article is issued from Wikipedia - version of the 10/14/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.