Quasi-relative interior

In topology, a branch of mathematics, the quasi-relative interior of a subset of a vector space is a refinement of the concept of the interior. Formally, if is a linear space then the quasi-relative interior of is

where denotes the closure of the conic hull.[1]

Let is a normed vector space, if is a convex finite-dimensional set then such that is the relative interior.[2]

See also

References

  1. Zălinescu, C. (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing  Co., Inc. pp. 2–3. ISBN 981-238-067-1. MR 1921556.
  2. Borwein, J.M.; Lewis, A.S. (1992). "Partially finite convex programming, Part I: Quasi relative interiors and duality theory" (pdf). Mathematical Programming. 57: 15–48. doi:10.1007/bf01581072. Retrieved October 19, 2011.


This article is issued from Wikipedia - version of the 5/25/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.