q-Hahn polynomials
See also: continuous q-Hahn polynomials, dual q-Hahn polynomials, and continuous dual q-Hahn polynomials
In mathematics, the q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
Relation to other polynomials
q-Hahn polynomials→ Quantum q-Krawtchouk polynomials:
q-Hahn polynomials→ Hahn polynomials
make the substitution, into definition of q-Hahn polynomials, and find the limit q→1, we obtain
: ,which is exactly Hahn polynomials.
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18
|contribution-url=
missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248 - Costas-Santos, R.S.; Sánchez-Lara, J.F. (September 2011). "Orthogonality of q-polynomials for non-standard parameters". Journal of Approximation Theory. 163 (9): 1246–1268. doi:10.1016/j.jat.2011.04.005.
This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.