Project MinE

Project MinE is an independent large scale whole genome research project that has been initiated by 2 patients with Amyotrophic Lateral Sclerosis and started on June 21, being World ALS day 2013.[1]

The symptoms of Amyotrophic Lateral Sclerosis are caused by degeneration of motor nerve cells (motor neurons) in the spinal cord, brainstem, and motor cortex. The exact cause of this degeneration is unknown but it is thought that environmental exposures and genetic factors play a role in susceptibility to the disease. In 5-10% of patients the family history is positive for ALS. However, it is not always possible to establish the mode of inheritance in each pedigree and not all familial cases may suffer from a genuine Mendelian or monogenic disorder. Autosomal-dominant mutations in the C9orf72 and the SOD1 gene are found in a substantial number of familial ALS cases. Mutations in other genes (such as VAPB [2], ANG, TARDBP and FUS) have been reported, but are found at a much lower frequency and with variable penetrance, suggesting the involvement of other genes.

Project MinE is a research project to systematically interrogate the human genome for both common and rare genetic variation in ALS (genetic “data mining” explains the project name). The project consists of two phases and combines a genome-wide association study (GWAS) study with whole genome sequencing:

The long-term benefit of the approach taken for project MinE is the priceless catalogue of many non-ALS whole genomes that can be used to investigate other human diseases, including Diabetes Mellitus,[2] some types of cancer, and other neurological disorders.[3][4] Project MinE is worldwide the largest genetic study for Amyotrophic Lateral Sclerosis. The work has started in the second quarter of 2013 and is a unique international collaboration between scientists, industry, social foundations and patients.

On July 25, 2016, the first results were published in 2 publications in Nature Genetics leading to the discovery of NEK1 and C21orf2 as new ALS risk genes[5][6]

References

  1. Press release project MinE, june 21st 2013 : https://projectmine.com/contents/uploads/press-release-project-mine-21-06-2013.pdf
  2. "Association of Six Single Nucleotide Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population". PLoS ONE. 6: e26953. doi:10.1371/journal.pone.0026953.
  3. Seshadri, Sudha; et al. (2010). "Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease". JAMA. 303.
  4. Maraganore, DM; de Andrade, M; Lesnick, TG; Strain, KJ; Farrer, MJ; Rocca, WA; Pant, PV; Frazer, KA; Cox, DR; Ballinger, DG (2005). "High-resolution whole-genome association study of Parkinson disease". Am. J. Hum. Genet. 77: 685–93. doi:10.1086/496902. PMC 1271381Freely accessible. PMID 16252231.
  5. http://www.nature.com/ng/journal/v48/n9/full/ng.3622.html
  6. http://www.nature.com/ng/journal/v48/n9/full/ng.3626.html

External links

This article is issued from Wikipedia - version of the 11/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.