P5 (microarchitecture)

P5
L1 cache 16–32 KiB
Model Pentium series
Created March 22, 1993
Architecture P5 (IA-32)
Instructions MMX
Socket(s)
Predecessor Intel 80486
Successor P6

The first Pentium microprocessor was introduced by Intel on March 22, 1993.[1][2] Dubbed P5, its microarchitecture was the fifth generation for Intel, and the first superscalar IA-32 microarchitecture. As a direct extension of the 80486 architecture, it included dual integer pipelines, a faster floating-point unit, wider data bus, separate code and data caches and features for further reduced address calculation latency. In 1996, the Pentium with MMX Technology (often simply referred to as Pentium MMX) was introduced with the same basic microarchitecture complemented with an MMX instruction set, larger caches, and some other enhancements.

Intel Pentium A80501 66 MHz SX950 Die Image

The P5 Pentium competitors included the Motorola 68060 and the PowerPC 601 as well as the SPARC, MIPS, and Alpha microprocessor families, most of which also used a superscalar in-order dual instruction pipeline configuration at some time.

Intel's Larrabee multicore architecture project uses a processor core derived from a P5 core (P54C), augmented by multithreading, 64-bit instructions, and a 16-wide vector processing unit.[3] Intel's low-powered Bonnell microarchitecture employed in early Atom processor cores also uses an in-order dual pipeline similar to P5.[4]

Development

The P5 microarchitecture was designed by the same Santa Clara team which designed the 386 and 486.[5] Design work started in 1989;[6] the team decided to use a superscalar architecture, with on-chip cache, floating-point, and branch prediction. The preliminary design was first successfully simulated in 1990, followed by the laying-out of the design. By this time, the team had several dozen engineers. The design was taped out, or transferred to silicon, in April 1992, at which point beta-testing began.[7] By mid-1992, the P5 team had 200 engineers.[8] Intel at first planned to demonstrate the P5 in June 1992 at the trade show PC Expo, and to formally announce the processor in September 1992,[9] but design problems forced the demo to be cancelled, and the official introduction of the chip was delayed until the spring of 1993.[10][11]

John H. Crawford, chief architect of the original 386, co-managed the design of the P5,[12] along with Donald Alpert, who managed the architectural team. Dror Avnon managed the design of the FPU.[13] Vinod K. Dham was general manager of the P5 group.[14]

Major improvements over the 80486 microarchitecture

The P5 microarchitecture brings several important advancements over the preceding i486 architecture.

The Pentium was designed to execute over 100 million instructions per second (MIPS),[15] and the 75 MHz model was able to reach 126.5 MIPS in certain benchmarks.[16] The Pentium architecture typically offered just under twice the performance of a 486 processor per clock cycle in common benchmarks. The fastest 80486 parts (with slightly improved microarchitecture and 100 MHz operation) were almost as powerful as the first-generation Pentiums, and the AMD Am5x86 was roughly equal to the Pentium 75 regarding pure ALU performance.

Bugs and problems

The early versions of 60–100 MHz P5 Pentiums had a problem in the floating point unit that resulted in incorrect (but predictable) results from some division operations. This bug, discovered in 1994 by professor Thomas Nicely at Lynchburg College, Virginia, became known as the Pentium FDIV bug and caused embarrassment for Intel, which created an exchange program to replace the faulty processors. Soon afterwards, a bug was discovered which could allow a malicious program to crash a system without any special privileges (the "F00F bug"); fortunately, operating systems were able to implement workarounds to prevent crashes.

The 60 and 66 MHz 0.8 µm versions of the P5 Pentium processors also had (for the time) high heat production due to their 5 V operation, which could cause their lives to end early for some users. The P54C used 3.3 V and had significantly (about 51%) lower power draw (a quadratic relationship). P5 Pentiums used Socket 4, while P54C started out on Socket 5 before moving to Socket 7 in later revisions. All desktop Pentiums from P54CS onwards used Socket 7.

Cores and steppings

The Pentium was Intel's primary microprocessor for personal computers during the mid-1990s. The original design was reimplemented in newer processes and new features were added to maintain its competitiveness as well as to address specific markets such as portable computers. As a result, there were several variants of the P5 microarchitecture.

P5

Intel Pentium microarchitecture.

The first Pentium microprocessor core was code-named "P5". Its product code was 80501 (80500 for the earliest steppings Q0399). There were two versions, specified to operate at 60 MHz and 66 MHz respectively. This first implementation of the Pentium used a traditional 5 Volt power supply (descended from the usual TTL logic compatibility requirements). It contained 3.1 million transistors and measured 16.7 mm by 17.6 mm for an area of 293.92 mm2.[17] It was fabricated in a 0.8 µm BiCMOS process.[18] The five-volt design resulted in relatively high energy consumption for its operating frequency, when compared to the later models.

P54C

Intel Pentium P54C die shot

The P5 was followed by the P54C (80502), also known as Pentium-S; there were versions specified to operate at 75, 90, or 100 MHz using a 3.3 volt power supply. This was the first Pentium processor to operate at 3.3 volts, reducing energy consumption. It employed an internal clock multiplier to let the internal circuitry work at a higher frequency than the external address and data buses, as it is more complicated and cumbersome to increase the external frequency, due to physical constraints. It also allowed two-way multiprocessing and had an integrated local APIC as well as new power management features. It contained 3.3 million transistors and measured 163 mm2.[19] It was fabricated in a BiCMOS process which has been described as both 0.5 µm and 0.6 µm due to differing definitions.[19]

P54CQS

The P54C was followed by the P54CQS which operated at 120 MHz. It was fabricated in a 0.35 µm BiCMOS process and was the first commercial microprocessor to be fabricated in a 0.35 µm process.[19] Its transistor count is identical to the P54C and, despite the newer process, it had an identical die area as well. The chip was connected to the package using wire bonding, which only allows connections along the edges of the chip. A smaller chip would have required a redesign of the package, as there is a limit on the length of the wires and the edges of the chip would be further away from the pads on the package. The solution was to keep the chip the same size, retain the existing pad-ring, and only reduce the size of the Pentium's logic circuitry to enable it to achieve higher clock frequencies.[19]

P54CS

The P54CQS was followed by the P54CS, which operated at 133, 150, 166 and 200 MHz. It contained 3.3 million transistors, measured 90 mm2 and was fabricated in a 0.35 µm BiCMOS process with four levels of interconnect.

P24T

Further information: Pentium OverDrive

The P24T Pentium OverDrive for 486 systems were released in 1995, which were based on 3.3 V 0.6 µm versions using a 63 or 83 MHz clock. Since these used Socket 2/3, some modifications had to be made to compensate for the 32-bit data bus and slower on-board L2 cache of 486 motherboards. They were therefore equipped with a 32 KB L1 cache (double that of pre-P55C Pentium CPUs).

P55C

Pentium logo, with MMX enhancement (1993–1999)
Intel Pentium MMX microarchitecture.
Pentium MMX 166 MHz without cover

The P55C (or 80503) was developed by Intel's Research & Development Center in Haifa, Israel. It was sold as Pentium with MMX Technology (usually just called Pentium MMX); although it was based on the P5 core, it featured a new set of 57 "MMX" instructions intended to improve performance on multimedia tasks, such as encoding and decoding digital media data. The Pentium MMX line was introduced on 22 October 1996.[20]

The new instructions worked on new data types: 64-bit packed vectors of either eight 8-bit integers, four 16-bit integers, two 32-bit integers, or one 64-bit integer. So, for example, the PADDUSB (Packed ADD Unsigned Saturated Byte) instruction adds two vectors, each containing eight 8-bit unsigned integers together, pairwise; each addition that would overflow saturates, yielding 255, the maximum unsigned value that can be represented in a byte. These rather specialized instructions generally require special coding by the programmer for them to be used.

Other changes to the core include a 6-stage pipeline (vs. 5 on P5) with a return stack (first done on Cyrix 6x86) and better parallelism, an improved instruction decoder, 32 KB L1 cache with 4-way associativity (vs. 16 KB with 2-way on P5), 4 write buffers (vs. 2 on P5) and an improved branch predictor taken from the Pentium Pro, with a 512 entry buffer (vs. 256 on P5).[21]

It contained 4.5 million transistors and had an area of 140 mm2. It was fabricated in a 0.28 µm CMOS process with the same metal pitches as the previous 0.35 µm BiCMOS process, so Intel described it as "0.35 µm" because of its similar transistor density.[22] The process has four levels of interconnect.[22]

While the P55C is compatible with the common Socket 7 motherboard configuration, the voltage requirements for powering the chip differ from the standard Socket 7 specifications. Most motherboards manufactured for Socket 7 prior to the establishment of the P55C standard are not compliant with the dual intensity required for proper operation of this chip. Intel temporarily manufactured an upgrade kit called the OverDrive that was designed to correct this lack of planning on the motherboard makers part.

Tillamook

Pentium MMX notebook CPUs used a "mobile module" that held the CPU. This module was a PCB with the CPU directly attached to it in a smaller form factor. The module snapped to the notebook motherboard and typically a heat spreader was installed and made contact with the module. However, with the 0.25 µm Tillamook Mobile Pentium MMX (named after a city in Oregon), the module also held the 430TX chipset along with the system's 512 KB SRAM cache memory.

Models and variants

Pentium and Pentium with MMX Technology
Code name P5 P54C P54CS P55C Tillamook
Product code 80501 80502 80503
Process size (µm) 0.80 0.60 or 0.35* 0.35 0.35 (later 0.28) 0.25
Die area (mm2) 293.92 (16.7 x 17.6 mm) 148 @ 0,6 µm / 91 (later 83) @ 0,35 µm 91 (later 83) 141 @ 0,35 µm / 128 @ 0,28 µm 94.47 (9.06272 x 10.42416 mm)
Number of transistors (millions) 3.10 3.20 3.30 4.50
Socket Socket 4 Socket 5/7 Socket 7
Package CPGA CPGA/TCP* CPGA/PPGA/TCP* CPGA/PPGA/TCP* TCP/TCP on MMC-1
Clock speed (MHz) 60 66 75 90 100 120 133 150 166 200 120* 133* 150* 166 200 233 166 200 233 266 300
Bus speed (MHz) 60 66 50 60 50 66 60 66 60 66 60 66 60 66
Core Voltage 5.0 5.15 3.3 2,9* 3.3 2.9* 3.3 3.1* 2.9* 3.3 3.1* 2.9* 3.3 3.1* 2.9* 3.3 3.1* 2.9* 3.3 3.3 2.2* 2.45* 2.45* 2.8 2.45* 2.8 2.8 1.9 1.8* 1.8* 1.8* 1.9 2.0* 2.0*
I/O Voltage 5.0 5.15 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.5
TDP (max. W) 14.6 (15.3) 16.0 (17.3) 8.0 (9.5) 6.0* (7.3*) 9.0 (10.6) 7.3* (8.8*) 10.1 (11.7) 8.0 at 0.6μ* (9.8 at 0.6μ*) 5.9 at 0.35μ* (7.6 at 0.35μ*) 12.8 (13.4) 7.1* (8.8*) 11.2 (12.2) 7.9* (9.8*) 11.6 (13.9) 10.0* (12.0*) 14.5 (15.3) 15.5 (16.6) 4.2* 7.8* (11.8*) 8.6* (12.7*) 13.1 (15.7) 9.0* (13.7*) 15.7 (18.9) 17.0 (21.5) 4.5 (7.4) 4.1* (5.4*) 5.0* (6.1*) 5.5* (7.0*) 7.6 (9.2) 7.6* (9.6*) 8.0*
Introduced 1993-03-22 1994-10-10 1994-03-07 1995-03-27 1995-06-12 1996-01-04 1996-06-10 1997-10-20 1997-05-19 1997-01-08 1997-06-02 1997-08 1998-01 1999-01
* An asterisk indicates that these were only available as Mobile Pentium or Mobile Pentium MMX chips for laptops.
Pentium OverDrive with MMX Technology
Code name P54CTB
Product code PODPMT60X150 PODPMT66X166 PODPMT60X180 PODPMT66X200
Process size (µm) 0.35
Socket Socket 5/7
Package CPGA with heatsink, fan and voltage regulator
Clock speed (MHz) 125 150 166 150 180 200
Bus speed (MHz) 50 60 66 50 60 66
Upgrade for Pentium 75 Pentium 90 Pentium 100 and 133 Pentium 75 Pentium 90, 120 and 150 Pentium 100, 133 and 166
TDP (max. W) 15.6 15.6 15.6 18
Voltage 3.3 3.3 3.3 3.3
Embedded versions of Pentium with MMX Technology
Code name P55C Tillamook
Product code FV8050366200 FV8050366233 FV80503CSM66166 GC80503CSM66166 GC80503CS166EXT FV80503CSM66266 GC80503CSM66266
Process size (µm) 0.35 0.25
Clock speed (MHz) 200 233 166 166 166 266 266
Bus speed (MHz) 66 66 66 66 66 66 66
Package PPGA PPGA PPGA BGA BGA PPGA BGA
TDP (max. W) 15.7 17 4.5 4.1 4.1 7.6 7.6
Voltage 2.8 2.8 1.9 1.8 1.8 1.9 2.0

Competitors

After the introduction of the Pentium, competitors such as Nexgen,[23] AMD, Cyrix, and Texas Instruments announced Pentium-compatible processors in 1994.[24] CIO magazine identified NexGen's Nx586 as the first Pentium-compatible CPU,[25] while PC Magazine described the Cyrix 6x86 as the first. These were followed by the AMD K5, which was delayed due to design difficulties. AMD later bought NexGen in order to help design the AMD K6, and Cyrix was purchased by National Semiconductor.[26] Later processors from AMD and Intel retain compatibility with the original Pentium.

See also

Competitors

References

  1. View Processors Chronologically by Date of Introduction:, Intel, retrieved 2007-08-14
  2. Intel Pentium Processor Family, Intel, retrieved 2007-08-14
  3. §3 of Seiler, L.; Cavin, D.; Espasa, E.; Grochowski, T.; Juan, M.; Hanrahan, P.; Carmean, S.; Sprangle, A.; Forsyth, J.; Abrash, R.; Dubey, R.; Junkins, E.; Lake, T.; Sugerman, P. (August 2008). "Larrabee: A Many-Core x86 Architecture for Visual Computing" (PDF). ACM Transactions on Graphics. Proceedings of ACM SIGGRAPH 2008. 27 (3): 18:11–18:11. doi:10.1145/1360612.1360617. ISSN 0730-0301. Retrieved 2008-08-06.
  4. Anand Lal Shimpi (January 27, 2010), Why Pine Trail Isn't Much Faster Than the First Atom, retrieved 2010-08-04
  5. p. 1, The Pentium Chronicles: The People, Passion, and Politics Behind Intel's Landmark Chips, Robert P. Colwell, Wiley, 2006, ISBN 978-0-471-73617-2.
  6. p. 88, "Inside Intel", Business Week, #3268, June 1, 1992.
  7. "The hot new star of microchips", Monica Horten, New Scientist, #1871, pp. 31 ff., May 1, 1993. Accessed on line June 9, 2009.
  8. p. 89, "Inside Intel", Business Week, #3268, June 1, 1992.
  9. p. 8, "Intel to offer a peek at its `586' chip", Tom Quinlan, InfoWorld, March 16, 1992.
  10. p. 1, "Design woes force Intel to cancel 586 chip demo", Tom Quinlan and Cate Corcoran, InfoWorld 14, #24, June 15, 1992.
  11. pp. 1, 103, "P5 chip delay won't alter rivals' plans", Tom Quinlan, InfoWorld 14, #30, July 27, 1992.
  12. p. 54, "Intel Turns 35: Now What?", David L. Margulius, InfoWorld, July 21, 2003, ISSN 0199-6649.
  13. p. 21, "Architecture of the Pentium microprocessor", D. Alpert and D. Avnon, IEEE Micro, 13, #3 (June 1993), pp. 11–21, doi:10.1109/40.216745.
  14. p. 90, "Inside Intel", Business Week, #3268, June 1, 1992.
  15. http://dede.essortment.com/pcusersguides_rjje.htm
  16. http://www.islandnet.com/~kpolsson/micropro/proc1994.htm
  17. Case, Brian (29 March 1993). "Intel Reveals Pentium Implementation Details". Microprocessor Report.
  18. Intel Pentium processor (510\60, 567\66). Nov 1994
  19. 1 2 3 4 Gwennap, Linley (27 March 1995). "Pentium is First CPU to Reach 0.35 Micron". Microprocessor Report.
  20. New Chip Begs New Questions, CNet, retrieved 2009-02-06
  21. ftp://download.intel.com/support/processors/pentiummmx/sb/24318504.pdf
  22. 1 2 Slater, Michael (5 March 1996). "Intel's Long-Awaited P55C Disclosed". Microprocessor Report.
  23. Corcoran, Cate; Crothers, Brooke (July 11, 1994). "NexGen to Beat Intel's Chip Prices". InfoWorld. IDG: 5.
  24. Barr, Christopher (January 11, 1994). "Pentium Killers". PC Magazine. Ziff Davis. 13 (1): 29.
  25. Edwards, John (June 15, 1995). "In the Chips". CIO magazine. IDG. 8 (17): 72–76.
  26. Slater, Michael (September 23, 1997). "The CPU for Your Next PC". PC Magazine. Ziff Davis. 16 (16): 130–133.

Intel datasheets

Intel manuals

These Manuals do provide an overview of the Pentium Processor and its features:

This article is issued from Wikipedia - version of the 11/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.