Nesbitt's inequality
In mathematics, Nesbitt's inequality is a special case of the Shapiro inequality. It states that for positive real numbers a, b and c we have:
Proof
First proof: AM-HM
Clearing denominators yields
from which we obtain
by expanding the product and collecting like denominators. This then simplifies directly to the final result.
Second proof: Rearrangement
Suppose , we have that
define
The scalar product of the two sequences is maximum because of the rearrangement inequality if they are arranged the same way, call and the vector shifted by one and by two, we have:
Addition yields Nesbitt's inequality.
Third proof: Hilbert's Seventeenth Problem
The following identity is true for all
This clearly proves that the left side is no less than for positive a,b and c.
Note: every rational inequality can be solved by transforming it to the appropriate identity, see Hilbert's seventeenth problem.
Fourth proof: Cauchy–Schwarz
Invoking the Cauchy–Schwarz inequality on the vectors yields
which can be transformed into the final result as we did in the AM-HM proof.
Fifth proof: AM-GM
We first employ a Ravi substitution: let . We then apply the AM-GM inequality to the set of six values to obtain
Dividing by yields
Substituting out the in favor of yields
which then simplifies directly to the final result.
Sixth proof: Titu's lemma
Titu's lemma, a direct consequence of the Cauchy–Schwarz inequality, states that for any sequence of real numbers and any sequence of positive numbers , . We use its three-term instance with -sequence and -sequence :
By multiplying out all the products on the lesser side and collecting like terms, we obtain
which simplifies to
By the rearrangement inequality, we have , so the fraction on the lesser side must be at least . Thus,
References
- Arthur Lohwater (1982). "Introduction to Inequalities". Online e-book in PDF format.
External links
- See AoPS for more proofs of this inequality.
- "Nesbitt's inequality". PlanetMath.
- "proof of Nesbitt's inequality". PlanetMath.