NAB1
NGFI-A-binding protein 1 is a protein that in humans is encoded by the NAB1 gene.[3][4][5][6]
Interactions
NAB1 has been shown to interact with Zif268.[3]
References
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- 1 2 Russo MW, Sevetson BR, Milbrandt J (Aug 1995). "Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription". Proc Natl Acad Sci U S A. 92 (15): 6873–7. doi:10.1073/pnas.92.15.6873. PMC 41432. PMID 7624335.
- ↑ Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC, Milbrandt J (Aug 1996). "NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli". Mol Cell Biol. 16 (7): 3545–53. PMC 231349. PMID 8668170.
- ↑ Swirnoff AH, Apel ED, Svaren J, Sevetson BR, Zimonjic DB, Popescu NC, Milbrandt J (Jan 1998). "Nab1, a corepressor of NGFI-A (Egr-1), contains an active transcriptional repression domain". Mol Cell Biol. 18 (1): 512–24. PMC 115883. PMID 9418898.
- ↑ "Entrez Gene: NAB1 NGFI-A binding protein 1 (EGR1 binding protein 1)".
Further reading
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery.". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Thiel G, Kaufmann K, Magin A, et al. (2000). "The human transcriptional repressor protein NAB1: expression and biological activity.". Biochim. Biophys. Acta. 1493 (3): 289–301. doi:10.1016/s0167-4781(00)00207-4. PMID 11018254.
- Qiu FH, Devchand PR, Wada K, Serhan CN (2002). "Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils.". FASEB J. 15 (14): 2736–8. doi:10.1096/fj.01-0576fje. PMID 11687510.
- Venken K, Di Maria E, Bellone E, et al. (2003). "Search for mutations in the EGR2 corepressor proteins, NAB1 and NAB2, in human peripheral neuropathies.". Neurogenetics. 4 (1): 37–41. doi:10.1007/s10048-001-0124-2. PMID 12030330.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Brandenberger R, Wei H, Zhang S, et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation.". Nat. Biotechnol. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4.". Nature. 434 (7034): 724–31. doi:10.1038/nature03466. PMID 15815621.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.