Traffic collision

"Car crash" redirects here. For other uses, see Car Crash.
Vehicle collision
Synonyms traffic accident, motor vehicle accident, car accident, automobile accident, road traffic collision, road accident, road traffic accident, wreck, car crash, car wreck, car smash, auto accident, knockdown, plowthrough, fender bender, pileup
The front ends of two vehicles after an accident
A head-on collision involving two vehicles
Classification and external resources
Specialty Emergency medicine
ICD-10 V89.2 or V99
ICD-9-CM E810 - E819
MeSH D000063

A traffic collision, also known as a motor vehicle collision (MVC) among others, occurs when a vehicle collides with another vehicle, pedestrian, animal, road debris, or other stationary obstruction, such as a tree or pole. Traffic collisions may result in injury, death and property damage.

A number of factors contribute to the risk of collision, including vehicle design, speed of operation, road design, road environment, and driver skill, impairment due to alcohol or drugs, and behavior, notably speeding and street racing. Worldwide, motor vehicle collisions lead to death and disability as well as financial costs to both society and the individuals involved.

Road injuries occurred in about 54 million people in 2013.[1] This resulted in 1.4 million deaths in 2013, up from 1.1 million deaths in 1990.[2] About 68,000 of these occurred in children less than five years old.[2] Almost all high-income countries have decreasing death rates, while the majority of low-income countries have increasing death rates due to traffic collisions. Middle-income countries have the highest rate with 20 deaths per 100,000 inhabitants, 80% of all road fatalities by only 52% of all vehicles. While the death rate in Africa is the highest (24.1 per 100,000 inhabitants), the lowest rate is to be found in Europe (10.3).[3]

Terminology

A traffic collision from 1952
A rolled over box truck being handled by fire fighters in Jakarta, Indonesia

Traffic collisions can be classified by general type. Types of collision include head-on, road departure, rear-end, side collisions, and rollovers.

Many different terms are commonly used to describe vehicle collisions. The World Health Organization use the term road traffic injury,[4] while the U.S. Census Bureau uses the term motor vehicle accidents (MVA),[5] and Transport Canada uses the term "motor vehicle traffic collision" (MVTC).[6] Other common terms include auto accident, car accident, car crash, car smash, car wreck, motor vehicle collision (MVC), personal injury collision (PIC), road accident, road traffic accident (RTA), road traffic collision (RTC), road traffic incident (RTI), road traffic accident and later road traffic collision, as well as more unofficial terms including smash-up, pile-up, and fender bender.

Some organizations have begun to avoid the term "accident". Although auto collisions are rare in terms of the number of vehicles on the road and the distance they travel, addressing the contributing factors can reduce their likelihood. For example, proper signage can decrease driver error and thereby reduce crash frequency by a third or more.[7] That is why these organizations prefer the term "collision" to "accident". In the UK the term "incident" is displacing "accident" in official and quasi-official use.[8][9]

Historically in the United States, use of terms other than "accidents" had been criticized for holding back safety improvements, based on the idea that a culture of blame may discourage the involved parties from fully disclosing the facts, and thus frustrate attempts to address the real root causes.[10]

Health effects

Psychological

Following some collisions long lasting psychological problems may occur.[11] These issues may make those who have been in a crash afraid to drive again. In some cases, the psychological trauma may affect individuals' ability to work and take on family responsibilities.

Physical

A number of physical injuries can commonly result from the blunt force trauma caused by an accident, ranging from bruising and contusions to catastrophic physical injury (e.g., paralysis) or death.

Causes

A 1985 study by K. Rumar, using British and American crash reports as data, suggested 57% of crashes were due solely to driver factors, 27% to combined roadway and driver factors, 6% to combined vehicle and driver factors, 3% solely to roadway factors, 3% to combined roadway, driver, and vehicle factors, 2% solely to vehicle factors, and 1% to combined roadway and vehicle factors.[12] Reducing the severity of injury in crashes is more important than reducing incidence and ranking incidence by broad categories of causes is misleading regarding severe injury reduction. Vehicle and road modifications are generally more effective than behavioral change efforts with the exception of certain laws such as required use of seat belts, motorcycle helmets and graduated licensing of teenagers.[13]

Human factors

Man with visible facial scars resulting from a car accident

Human factors in vehicle collisions include all factors related to drivers and other road users that may contribute to a collision. Examples include driver behavior, visual and auditory acuity, decision-making ability, and reaction speed.

A 1985 report based on British and American crash data found driver error, intoxication and other human factors contribute wholly or partly to about 93% of crashes.[12]

Drivers distracted by mobile devices had nearly four times greater risk of crashing their cars than those who were not. Dialing a phone is the most dangerous distraction, increasing a drivers’ chance of crashing by 12 times, followed by reading or writing, which increased the risk by 10 times.[14]

An RAC survey of British drivers found that most thought they were better than average drivers; a contradictory result showing overconfidence in their abilities. Nearly all drivers who had been in a crash did not believe themselves to be at fault.[15] One survey of drivers reported that they thought the key elements of good driving were:[16]

Although proficiency in these skills is taught and tested as part of the driving exam, a 'good' driver can still be at a high risk of crashing because:

...the feeling of being confident in more and more challenging situations is experienced as evidence of driving ability, and that 'proven' ability reinforces the feelings of confidence. Confidence feeds itself and grows unchecked until something happens – a near-miss or an accident.[16]

An AXA survey concluded Irish drivers are very safety-conscious relative to other European drivers. However, this does not translate to significantly lower crash rates in Ireland.[17]

Accompanying changes to road designs have been wide-scale adoptions of rules of the road alongside law enforcement policies that included drink-driving laws, setting of speed limits, and speed enforcement systems such as speed cameras. Some countries' driving tests have been expanded to test a new driver's behavior during emergencies, and their hazard perception.

There are demographic differences in crash rates. For example, although young people tend to have good reaction times, disproportionately more young male drivers feature in accidents,[18] with researchers observing that many exhibit behaviors and attitudes to risk that can place them in more hazardous situations than other road users.[16] This is reflected by actuaries when they set insurance rates for different age groups, partly based on their age, sex, and choice of vehicle. Older drivers with slower reactions might be expected to be involved in more accidents, but this has not been the case as they tend to drive less and, apparently, more cautiously.[19] Attempts to impose traffic policies can be complicated by local circumstances and driver behavior. In 1969 Leeming warned that there is a balance to be struck when "improving" the safety of a road:[20]

Conversely, a location that does not look dangerous may have a high crash frequency. This is, in part, because if drivers perceive a location as hazardous, they take more care. Accidents may be more likely to happen when hazardous road or traffic conditions are not obvious at a glance, or where the conditions are too complicated for the limited human machine to perceive and react in the time and distance available. High incidence of crashes is not indicative of high injury risk. Crashes are common in areas of high vehicle congestion but fatal crashes occur disproportionately on rural roads at night when traffic is relatively light.

This phenomenon has been observed in risk compensation research, where the predicted reductions in accident rates have not occurred after legislative or technical changes. One study observed that the introduction of improved brakes resulted in more aggressive driving,[21] and another argued that compulsory seat belt laws have not been accompanied by a clearly attributed fall in overall fatalities.[22] Most claims of risk compensation offsetting the effects of vehicle regulation and belt use laws has been discredited by research using more refined data.[13]

In the 1990s, Hans Monderman's studies of driver behavior led him to the realization that signs and regulations had an adverse effect on a driver's ability to interact safely with other road users. Monderman developed shared space principles, rooted in the principles of the woonerven of the 1970s. He concluded that the removal of highway clutter, while allowing drivers and other road users to mingle with equal priority, could help drivers recognize environmental clues. They relied on their cognitive skills alone, reducing traffic speeds radically and resulting in lower levels of road casualties and lower levels of congestion.[23]

Some crashes are intended; staged crashes, for example, involve at least one party who hopes to crash a vehicle in order to submit lucrative claims to an insurance company.[24] In the USA in the 1990s, criminals recruited Latin immigrants to deliberately crash cars, usually by cutting in front of another car and slamming on the brakes. It was an illegal and risky job, and they were typically paid only $100. Jose Luis Lopez Perez, a staged crash driver, died after one such maneuver, leading to an investigation that uncovered the increasing frequency of this type of crash.[25]

Motor vehicle speed

Police car accident

The U.S. Department of Transportation's Federal Highway Administration review research on traffic speed in 1998.[26] The summary says:

The Road and Traffic Authority (RTA) of the Australian state of New South Wales (NSW) asserts speeding (traveling too fast for the prevailing conditions or above the posted speed limit[27]) is a factor in about 40 percent of road deaths.[28] The RTA also say speeding increases the risk of a crash and its severity.[28] On another web page, the RTA qualify their claims by referring to one specific piece of research from 1997, and writes "research has shown that the risk of a crash causing death or injury increases rapidly, even with small increases above an appropriately set speed limit."[29]

The contributory factor report in the official British road casualty statistics show for 2006, that "exceeding speed limit" was a contributory factor in 5% of all casualty crashes (14% of all fatal crashes), and "traveling too fast for conditions" was a contributory factor in 11% of all casualty crashes (18% of all fatal crashes).[30]

Driver impairment

Driver impairment describes factors that prevent the driver from driving at their normal level of skill. Common impairments include:

Alcohol
Relative risk of an accident based on blood alcohol levels[31]

According to the Government of Canada, coroner reports from 2008 suggested almost 40% of fatally injured drivers consumed some quantity of alcohol before the collision.[32]

Physical impairment

Poor eyesight and/or physical impairment, with many jurisdictions setting simple sight tests and/or requiring appropriate vehicle modifications before being allowed to drive;

Youth

Insurance statistics demonstrate a notably higher incidence of accidents and fatalities among drivers aged in their teens or early twenties, with insurance rates reflecting this data. These drivers have the highest incidence of both accidents and fatalities among all driver age groups, a fact that was observed well before the advent of mobile phones.

Females in this age group exhibit somewhat lower accident and fatality rates than males but still register well above the median for drivers of all ages. Also within this group, the highest accident incidence rate occurs within the first year of licensed driving. For this reason many US states have enacted a zero-tolerance policy wherein receiving a moving violation within the first six months to one year of obtaining a license results in automatic license suspension. No US state allows fourteen year-olds to obtain drivers’ licenses any longer.

Old age

Old age, with some jurisdictions requiring driver retesting for reaction speed and eyesight after a certain age.

Sleep deprivation

Fatigue[33]

Drug use

Including some prescription drugs, over the counter drugs (notably antihistamines, opioids and muscarinic antagonists), and illegal drugs.

Distraction

Research suggests that the driver's attention is affected by distracting sounds such as conversations and operating a mobile phone while driving. Many jurisdictions now restrict or outlaw the use of some types of phone within the car. Recent research conducted by British scientists suggests that music can also have an effect; classical music is considered to be calming, yet too much could relax the driver to a condition of distraction. On the other hand, hard rock may encourage the driver to step on the acceleration pedal, thus creating a potentially dangerous situation on the road.[34]

Combinations of factors

Several conditions can combine to create a much worse situation, for example:

Thus there are situations when a person may be impaired, but still legally allowed to drive, and becomes a potential hazard to themselves and other road users. Pedestrians or cyclists are affected in the same way and can similarly jeopardize themselves or others when on the road.

Road design

Main articles: Highway engineering and Road safety
A potential long fall stopped by an early guardrail, ca. 1920. Guardrails, median barriers, or other physical objects can help reduce the consequences of an accident or minimize damage.

A 1985 US study showed that about 34% of serious crashes had contributing factors related to the roadway or its environment. Most of these crashes also involved a human factor.[12] The road or environmental factor was either noted as making a significant contribution to the circumstances of the crash, or did not allow room to recover. In these circumstances it is frequently the driver who is blamed rather than the road; those reporting the accident have a tendency to overlook the human factors involved, such as the subtleties of design and maintenance that a driver could fail to observe or inadequately compensate for.[37]

Research has shown that careful design and maintenance, with well-designed intersections, road surfaces, visibility and traffic control devices, can result in significant improvements in accident rates.

Individual roads also have widely differing performance in the event of an impact. In Europe there are now EuroRAP tests that indicate how "self-explaining" and forgiving a particular road and its roadside would be in the event of a major incident.

In the UK, research has shown that investment in a safe road infrastructure program could yield a ⅓ reduction in road deaths, saving as much as £6 billion per year.[38] A consortium of 13 major road safety stakeholders have formed the Campaign for Safe Road Design, which is calling on the UK Government to make safe road design a national transport priority.

Vehicle design and maintenance

Main article: Automobile safety
A 2005 Chevrolet Malibu involved in a rollover crash
Seatbelts

Research has shown that, across all collision types, it is less likely that seat belts were worn in collisions involving death or serious injury, rather than light injury; wearing a seat belt reduces the risk of death by about 45 percent.[39] Seat belt use is controversial, with notable critics such as Professor John Adams suggesting that their use may lead to a net increase in road casualties due to a phenomenon known as risk compensation.[40] However, actual observation of driver behaviors before and after seat belt laws does not support the risk compensation hypothesis. Several important driving behaviors were observed on the road before and after the belt use law was enforced in Newfoundland, and in Nova Scotia during the same period without a law. Belt use increased from 16 percent to 77 percent in Newfoundland and remained virtually unchanged in Nova Scotia. Four driver behaviors (speed, stopping at intersections when the control light was amber, turning left in front of oncoming traffic, and gaps in following distance) were measured at various sites before and after the law. Changes in these behaviors in Newfoundland were similar to those in Nova Scotia, except that drivers in Newfoundland drove slower on expressways after the law, contrary to the risk compensation theory.[41]

Maintenance

A well-designed and well-maintained vehicle, with good brakes, tires and well-adjusted suspension will be more controllable in an emergency and thus be better equipped to avoid collisions. Some mandatory vehicle inspection schemes include tests for some aspects of roadworthiness, such as the UK's MOT test or German TÜV conformance inspection.

The design of vehicles has also evolved to improve protection after collision, both for vehicle occupants and for those outside of the vehicle. Much of this work was led by automotive industry competition and technological innovation, leading to measures such as Saab's safety cage and reinforced roof pillars of 1946, Ford´s 1956 Lifeguard safety package, and Saab and Volvo's introduction of standard fit seatbelts in 1959. Other initiatives were accelerated as a reaction to consumer pressure, after publications such as Ralph Nader's 1965 book Unsafe at Any Speed accused motor manufacturers of indifference towards safety.

In the early 1970s British Leyland started an intensive programme of vehicle safety research, producing a number of prototype experimental safety vehicles demonstrating various innovations for occupant and pedestrian protection such as air bags, anti-lock brakes, impact-absorbing side-panels, front and rear head restraints, run-flat tires, smooth and deformable front-ends, impact-absorbing bumpers, and retractable headlamps.[42] Design has also been influenced by government legislation, such as the Euro NCAP impact test.

Common features designed to improve safety include thicker pillars, safety glass, interiors with no sharp edges, stronger bodies, other active or passive safety features, and smooth exteriors to reduce the consequences of an impact with pedestrians.

The UK Department for Transport publish road casualty statistics for each type of collision and vehicle through its Road Casualties Great Britain report.[43] These statistics show a ten to one ratio of in-vehicle fatalities between types of car. In most cars, occupants have a 2–8% chance of death in a two-car collision.

Center of gravity
An Opel Vectra involved in a rollover crash

Some crash types tend to have more serious consequences. Rollovers have become more common in recent years, perhaps due to increased popularity of taller SUVs, people carriers, and minivans, which have a higher center of gravity than standard passenger cars. Rollovers can be fatal, especially if the occupants are ejected because they were not wearing seat belts (83% of ejections during rollovers were fatal when the driver did not wear a seat belt, compared to 25% when they did).[39] After a new design of Mercedes Benz notoriously failed a 'moose test' (sudden swerving to avoid an obstacle), some manufacturers enhanced suspension using stability control linked to an anti-lock braking system to reduce the likelihood of rollover. After retrofitting these systems to its models in 1999–2000, Mercedes saw its models involved in fewer crashes.[44]

Now, about 40% of new US vehicles, mainly the SUVs, vans and pickup trucks that are more susceptible to rollover, are being produced with a lower center of gravity and enhanced suspension with stability control linked to its anti-lock braking system to reduce the risk of rollover and meet US federal requirements that mandate anti-rollover technology by September 2011.[45]

Motorcycles

Motorcyclists have little protection other than their clothing and helmets. This difference is reflected in the casualty statistics, where they are more than twice as likely to suffer severely after a collision. In 2005 there were 198,735 road crashes with 271,017 reported casualties on roads in Great Britain. This included 3,201 deaths (1.1%) and 28,954 serious injuries (10.7%) overall. Of these casualties 178,302 (66%) were car users and 24,824 (9%) were motorcyclists, of whom 569 were killed (2.3%) and 5,939 seriously injured (24%).[46]

Other

Other possibly hazardous factors that may alter a driver's soundness on the road includes:

Prevention

A large body of knowledge has been amassed on how to prevent car crashes, and reduce the severity of those that do occur. See Road Traffic Safety.

United Nations

Owing to the global and massive scale of the issue, with predictions that by 2020 road traffic deaths and injuries will exceed HIV/AIDS as a burden of death and disability,[54] the United Nations and its subsidiary bodies have passed resolutions and held conferences on the issue. The first United Nations General Assembly resolution and debate was in 2003[55] The World Day of Remembrance for Road Traffic Victims was declared in 2005. In 2009 the first high level ministerial conference on road safety was held in Moscow.

The World Health Organization, a specialized agency of the United Nations Organization, in its Global Status Report on Road Safety 2009, estimates that over 90% of the world’s fatalities on the roads occur in low-income and middle-income countries, which have only 48% of the world’s registered vehicles, and predicts road traffic injuries will rise to become the fifth leading cause of death by 2030[56]

Accident migration

Accident migration refers to a situation where action to reduce road traffic accidents in one place may result in those accidents resurfacing elsewhere.[57] For example, an accident blackspot may occur at a dangerous bend.[58] The treatment for this may be to increase signage, post an advisory speed limit, apply a high-friction road surface, add crash barriers or any one of a number of other visible interventions. The immediate result may be to reduce collisions at the bend, but the subconscious relaxation on leaving the "dangerous" bend may cause drivers to act with fractionally less care on the rest of the road, resulting in an increase in collisions elsewhere on the road, and no overall improvement over the area. In the same way, increasing familiarity with the treated area will often result in a reduction over time to the previous level of care (regression to the mean) and may result in faster speeds around the bend due to perceived increased safety (risk compensation).

Epidemiology

Deaths for road traffic collisions per 100,000 inhabitants in 2012.[59]
  no data
  less than 5
  5-10
  10-15
  15-20
  20-25
  25-30
  30-35
  35-40
  more than 40
Road fatalities per vehicle-km (fatalities per 1 billion km)
  no data
  < 5.0
  5.0-6.5
  6.5-8.0
  8.0-9.5
  9.5-11.0
  11.0-12.5
  12.5-14.0
  14.0-15.5
  15.5-17.0
  17.0-18.5
  18.5-20.0
  > 20.0

Road injuries resulted in 1.4 million deaths in 2013 up from 1.1 million deaths in 1990.[2] This is about 2.5% of all deaths.[2] In 2004 50 million more were injured in motor vehicle collisions.[4][60] India recorded 105,000 traffic deaths in a year, followed by China with over 96,000 deaths.[61] This makes motor vehicle collisions the leading cause of injury and death among children worldwide 10 – 19 years old (260,000 children die a year, 10 million are injured)[62] and the sixth leading preventable cause of death in the United States[63] (45,800 people died and 2.4 million were injured in 2005).[64] In the state of Texas alone, there were a total of 415,892 traffic collisions, including 3,005 fatal crashes in 2012. In Canada they are the cause of 48% of severe injuries.[65]

Crash rates

The safety performance of roadways is almost always reported as a rate. That is, some measure of harm (deaths, injuries, or number of crashes) divided by some measure of exposure to the risk of this harm. Rates are used so the safety performance of different locations can be compared, and to prioritize safety improvements.

Common rates related to road traffic fatalities include the number of deaths per capita, per registered vehicle, per licensed driver, or per vehicle mile or kilometer traveled. Simple counts are almost never used. The annual count of fatalities is a rate, namely, the number of fatalities per year.

There is no one rate that is superior to others in any general sense. The rate to be selected depends on the question being asked – and often also on what data are available. What is important is to specify exactly what rate is measured and how it relates to the problem being addressed. Some agencies concentrate on crashes per total vehicle distance traveled. Others combine rates. The U.S. state of Iowa, for example, selects high accident locations based on a combination of crashes per million miles traveled, crashes per mile per year, and value loss (crash severity).[66]

Fatality

The definition of a road-traffic fatality varies from country to country. In the United States, the definition used in the Fatality Analysis Reporting System (FARS)[67] run by the National Highway Traffic Safety Administration (NHTSA) is a person who dies within 30 days of a crash on a US public road involving a vehicle with an engine, the death being the result of the crash. In the U.S., therefore, if a driver has a non-fatal heart attack that leads to a road-traffic crash that causes death, that is a road-traffic fatality. However, if the heart attack causes death prior to the crash, then that is not a road-traffic fatality.

The definition of a road accident fatality can change with time in the same country. For example, fatality was defined in France as a person who dies in the 6 days (pre 2005) after the accident and was subsequently changed to the 30 days (post 2005) after the accident.[68]

History

The fardier à vapeur of Nicolas-Joseph Cugnot allegedly crashed into a wall in 1771.[69]

The world’s first road traffic death involving a motor vehicle is alleged to have occurred on 31 August 1869.[70] Irish scientist Mary Ward died when she fell out of her cousins' steam car and was run over by it.

The British road engineer J. J. Leeming, compared the statistics for fatality rates in Great Britain, for transport-related incidents both before and after the introduction of the motor vehicle, for journeys, including those once by water that now are undertaken by motor vehicle:[20] For the period 1863–1870 there were: 470 fatalities per million of population (76 on railways, 143 on roads, 251 on water); for the period 1891–1900 the corresponding figures were: 348 (63, 107, 178); for the period 1931–1938: 403 (22, 311, 70) and for the year 1963: 325 (10, 278, 37).[20] Leeming concluded that the data showed that "travel accidents may even have been more frequent a century ago than they are now, at least for men".[20]

Truck collision with house in Compstall, United Kingdom (1914)

In 1969, a British road engineer compared the circumstances around road deaths as reported in various American states before the widespread introduction of 55 mph (89 km/h) speed limits and drunk-driving laws.[20]

'They took into account thirty factors which it was thought might affect the death rate. Among these were included the annual consumption of wine, of spirits and of malt beverages — taken individually — the amount spent on road maintenance, the minimum temperature, certain of the legal measures such as the amount spent on police, the number of police per 100,000 inhabitants, the follow-up programme on dangerous drivers, the quality of driver testing, and so on. The thirty factors were finally reduced to six by eliminating those found to have small or negligible effect. The final six were:

  • (a) The percentage of the total state highway mileage that is rural
  • (b) The percent increase in motor vehicle registration
  • (c) The extent of motor vehicle inspection
  • (d) The percentage of state-administered highway that is surfaced
  • (e) The average yearly minimum temperature
  • (f) The income per capita

'These are placed in descending order of importance. These six accounted for 70% of the variations in the rate.'

Society and culture

Economic costs

The global economic cost of MVCs was estimated at $518 billion per year in 2003, and $100 billion in developing countries.[60] The Center for Disease Control and Prevention estimated the U.S. cost in 2000 at $230 billion.[71] A 2010 US report estimated costs of $277 billion which Included lost productivity, medical costs, legal and court costs, emergency service costs (EMS), insurance administration costs, congestion costs, property damage, and workplace losses. "The value of societal harm from motor vehicle crashes, which includes both economic impacts and valuation for lost quality-of-life, was $870.8 billion in 2010. Sixty-eight percent of this value represents lost quality-of-life, while 32 percent is economic impacts."[72]

In the United States, individuals involved in motor vehicle accidents can be held financially liable for the consequences of an accident, including property damage, injuries to passengers and drivers, and fatalities. In addition, some states allow recovery for the diminished value of the vehicle from the at-fault driver's insurance company. Because these costs can easily exceed the annual income of the average driver, most US states require drivers to carry liability insurance to cover these potential costs. However, in the event of severe injuries or fatalities, victims may seek damages in civil court, often for well in excess of the value of insurance.

Additionally, drivers who are involved in a collision frequently receive one or more traffic citations, usually directly addressing any material violations such as speeding, failure to obey a traffic control device, or driving under the influence of drugs or alcohol. In the event of a fatality, a charge of vehicular homicide is occasionally prosecuted, especially in cases involving alcohol.

Convictions for traffic violations are usually penalized with fines, and for more severe offenses, the suspension or revocation of driving privileges. Convictions for alcohol offenses generally result in the revocation or long term suspension of the driver's license, and sometimes jail time and/or mandatory alcohol rehabilitation.

Due to increase in availability of cable news and Internet news, exposure to such legal actions has increased in recent years, specifically with coverage of cases and class action suits concerning SUV rollovers and recent incidents of sudden acceleration crashes highlighted by the 2010 Toyota Recall. Increased exposure has led to larger class action suits, and automobile owners' ability to link their collision causes and issues to ones in other regions has spread knowledge of external causes.

Sometimes, people may make false insurance claims or commit insurance fraud by staging collisions or jumping in front of moving cars.[73]

Art

American Landscape by Jan A. Nelson (graphite on Strathmore rag, 1974)

Cars have come to represent a part of the American Dream of ownership coupled with the freedom of the road. The violence of a car wreck provides a counterpoint to that promise and is the subject of artwork by a number of artists, such as John Salt, Jan Anders Nelson, and Li Yan. Though English, John Salt was drawn to American landscapes of wrecked vehicles like Desert Wreck (airbrushed oil on linen, 1972).[74] Similarly, Jan Anders Nelson works with the wreck in its resting state in junkyards or forests, or as elements in his paintings and drawings. American Landscape [75] is one example of Nelson´s focus on the violence of the wreck with cars and trucks piled into a heap, left to the forces of nature and time. This recurring theme of violence is echoed in the work of Li Yan. His painting Accident Nº 6 looks at the energy released during a crash.[76][77][78]

Andy Warhol used newspaper pictures of car wrecks with dead occupants in a number of his Disaster series of silkscreened canvases.[79] John Chamberlain used components of wrecked cars (such as bumpers and crumpled sheet metal fenders) in his welded sculptures.[80]

See also

References

  1. Global Burden of Disease Study 2013, Collaborators (22 August 2015). "Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.". Lancet (London, England). 386 (9995): 743–800. doi:10.1016/s0140-6736(15)60692-4. PMID 26063472.
  2. 1 2 3 4 GBD 2013 Mortality and Causes of Death, Collaborators (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.". Lancet. 385: 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604Freely accessible. PMID 25530442.
  3. Global status report on road safety 2013: Supporting a decade of action (PDF) (in English and Russian). Geneva, Switzerland: world health organization WHO. 2013. ISBN 978 92 4 156456 4. Retrieved 3 October 2014.
  4. 1 2 "WHO | World report on road traffic injury prevention".
  5. "The 2009 Statistical Abstract: Motor Vehicle Accidents and Fatalities".
  6. "Statistics and Data - Road and Motor Vehicle Safety - Road Transportation - Transport Canada".
  7. "Desktop Reference for Crash Reduction Factors, Report No. FHWA-SA-07-015" (PDF). Federal Highway Administration, U.S. Department of Transportation. September 2007. Retrieved 20 November 2014.
  8. "Traffic Scotland > Current Incidents".
  9. "M1 Motorway".
  10. Charles, Geoffrey (11 March 1969). "Cars And Drivers Accident prevention instead of blame". The Times. The Times. Quoting from JJ Leeming in Accidents and their prevention: "Blame for accidents seems to me to be at best irrelevant and at worst actively harmful." ... "Much of the Leeming case is that by attributing blame and instituting proceedings against the motorist, the law virtually guarantees that none of the participants will be wholly truthful, so that the factors that really led to the accident are never discovered."
  11. Academy staff (September 2004). "The Shocking Truth about Road Trauma - Key text". NOVA - Science in the News. Austrian Academy of Science. Retrieved 20 November 2014.
  12. 1 2 3 Harry Lum; Jerry A. Reagan (Winter 1995). "Interactive Highway Safety Design Model: Accident Predictive Module". Public Roads Magazine.
  13. 1 2 Robertson, LS. Injury Epidemiology: Fourth Edition. Free online at www.nanlee.net.
  14. ST. FLEUR, NICHOLAS (24 February 2016). "Reading This While You Drive Could Increase Your Risk of Crashing Tenfold". New York Times. Retrieved 29 February 2016.
  15. "I'm a good driver: you're not!". Drivers.com. 11 February 2000.
  16. 1 2 3 The Good, the Bad and the Talented: Young Drivers' Perspectives on Good Driving and Learning to Drive (PDF) (Road Safety Research Report No. 74 ed.). Transport Research Laboratory. January 2007. Retrieved 4 January 2008.
  17. "Home". Galway Independent. Retrieved 15 January 2012.
  18. Thew, Rosemary (2006). "Royal Society for the Prevention of Accidents Conference Proceedings" (PDF). Driving Standards Agency. Most at risk are young males between 17 and 25 years
  19. "forecasting older driver's accident rates". Department for Transport.
  20. 1 2 3 4 5 Leeming, J.J. (1969). Road Accidents: Prevent or Punish?. Cassell. ISBN 0-304-93213-2.
  21. Sagberg, Fosser, & Saetermo (1997). An investigation of behavioral adaptation to airbags and antilock brakes among taxi drivers (29 ed.). Accident Analysis and Prevention. pp. 293–302.
  22. Adams, John (1982). "The efficacy of seat belt legislation" (PDF). SAE Transactions.
  23. Ben Hamilton-Baillie (Autumn 2005). "Streets ahead" (PDF). Countryside Voice. Archived from the original (PDF) on 13 April 2008. Retrieved 10 March 2008.
  24. Lascher, Edward L. and Michael R. Powers. “The economics and politics of choice no-fault insurance.” Springer, 2001
  25. Dornstein, Ken. “Accidentally, on Purpose: The Making of a Personal Injury Underworld in America.” Palgrave Macmillan, 1998, p.3
  26. "Synthesis of Safety Research Related to Speed and Speed Limits" (PDF). U.S. Department of Transportation. Retrieved 5 March 2008.
  27. "Problem definition and countermeasures". NSW Roads and Traffic Authority. Retrieved 20 May 2008.
  28. 1 2 "The biggest killer on our roads". NSW Roads and Traffic Authority. Retrieved 5 March 2008.
  29. "Speeding research". NSW Roads and Traffic Authority. Retrieved 5 March 2008.
  30. "Road Casualties Great Britain: 2006" (PDF). UK Department for Transport. Archived from the original (PDF) on 13 April 2008. Retrieved 5 March 2008.
  31. "www.infrastructure.gov.au" (PDF).
  32. "Road Safety in Canada" (PDF). Transport Canada. p. 17.
  33. Kaywood, A (1982). Drive Right for Safety and Savings. p. 248.
  34. "Hard-Rock and Classic Music Could Lead to Road Accidents, New Survey Says". Infoniac.com. Retrieved 13 November 2011.
  35. Road Safety Part 1: Alcohol, drugs, ageing & fatigue (Research summary, TRL Report 543 ed.). UK Department for Transport. Spring 2003. Retrieved 1 January 2008.
  36. Road Safety Part 1: Alcohol, drugs, ageing & fatigue (Research summary, Transport Research Laboratory Road Safety Report No. 24 ed.). UK Department for Transport. Spring 2003. Retrieved 1 January 2008.
  37. Ray Fuller; Jorge A. Santos (2002). Human Factors for Highway Engineers. Emerald. p. 15. ISBN 978-0080434124.
  38. Hill, Joanne. "Getting Ahead: Returning Britain to European leadership in road casualty reduction" (PDF). Campaign for Safe Road Design. Retrieved 1 October 2008.
  39. 1 2 Broughton & Walter (February 2007). Trends in Fatal Car Accidents: Analyses of data. Project Report PPR172. Transport Research Laboratory.
  40. David Bjerklie (30 November 2006). "The Hidden Danger of Seat Belts". Time Inc. Retrieved 26 February 2008.
  41. Lund AK, Zador P (1984). "Mandatory belt use and driver risk taking". Risk Analysis. 4: 41–53. doi:10.1111/j.1539-6924.1984.tb00130.x.
  42. "Safety First: the SSV/SRV cars". AROnline. Keith Adams.
  43. "Annual transport accidents and casualties". UK Department for Transport. Retrieved 1 January 2008.
  44. Fahrunfalle: Dank ESP verunglucken Mercedes-Personenwagen seltener (in German), Mercedes Benz, archived from the original (Graph of accident share) on 16 February 2008, retrieved 28 December 2007, Road accidents are rare with ESP Mercedes passenger cars
  45. U.S. to Require Anti-Rollover Technology on New Cars by 2012, Insurance Journal, 15 September 2006, retrieved 28 December 2007
  46. Road Casualties in Great Britain, Main Results (Transport Statistics Bulletin ed.). Office of National Statistics. 2005. Retrieved 1 January 2008.
  47. Mindell, Jodi (2010). A Clinical Guide to Pediatric Sleep. p. 259.
  48. Bryan, Carson (2008). William Divot Mulligan. p. 127.
  49. Visagie, Brian (2014). The K53 Yard Test Made Easy: A Practical Guide for Learner Drivers. p. 48.
  50. Katz, Diane (1979). Integrated Safe Driving Information System Development: Final report. p. 27.
  51. Popular Mechanics - Mar 1959 - Page 94, Vol. 111, No. 3
  52. Gallucci, Nicolas (2013). Sport Psychology: Performance Enhancement, Performance Inhibition, Individuals and Teams. p. 139.
  53. Q News: The Muslim Magazine - Issues 327-338 - Page 13, 2001
  54. United Nations General Assembly Session 60 Verbatim Report 38. A/60/PV.38 page 6. 26 October 2005. Retrieved 9 July 2008.
  55. United Nations General Assembly Session 57 Verbatim Report 86. page 2. 22 May 2003. Retrieved 9 July 2008.
  56. "Road Traffic Deaths Index 2009 Country Rankings". Retrieved 2 February 2010.
  57. "An Error Occurred Setting Your User Cookie".
  58. "Accident 'migration' after remedial treatment at accident blackspots". trafficresearch.co.uk.
  59. "WHO Disease and injury country estimates". World Health Organization. 2014. Retrieved 15 Jul 2016.
  60. 1 2 "World report on road traffic injury prevention" (PDF). World Health Organization.
  61. ´"Nearly 300 Indians die daily on roads, shows report". Business Standard. 17 August 2009.
  62. "UN raises child accidents alarm". BBC News. 10 December 2008. Retrieved 25 May 2010.
  63. Mokdad AH, Marks JS, Stroup DF, Gerberding JL (March 2004). "Actual causes of death in the United States, 2000" (PDF). JAMA. 291 (10): 1238–45. doi:10.1001/jama.291.10.1238. PMID 15010446.
  64. "Report on Injuries in America :: Making Our World Safer".
  65. "Motor Vehicle Collisions Most Frequent Cause of Severe Injuries".
  66. Hallmark, Shauna (June 2002). "Evaluation of the Iowa DOT's Safety Improvement Candidate List Process" (PDF) (Final Report). Center for Transportation Research and Education, Iowa State university. Retrieved 20 November 2014.
  67. "FARS". Fars.nhtsa.dot.gov. Retrieved 13 November 2011.
  68. International Road Assistance Programme - International Transport Statistics Database
  69. However, the first known account of this crash dates to 1801. "Le fardier de Cugnot".
  70. "Mary Ward 1827-1869". King's County Chronicle. Offaly Historical & Archaeological Society. 2 September 2007. Retrieved 20 November 2014.
  71. "CDC - Motor Vehicle Safety". Center for Disease Control and Prevention.
  72. "The Economic and Societal Impact of Motor Vehicle Crashes, 2010," by Lawrence Blincoe, Ted R. Miller, Ph.D., Eduard Zaloshnja, Ph.D., Bruce A. Lawrence, Ph.D., DOT HS 812 013, Washington, D.C.: May 2014.
  73. Galperina, Marina (13 June 2012). "Why Russians Are Obsessed With Dash-Cams". Jalopnik. Retrieved 19 November 2012.
  74. "Desert Wreck". es.pinterest.com. Retrieved 13 February 2016.
  75. "American Landscape". www.janandersnelsonart.com. Retrieved 13 February 2016.
  76. "Accident Nº 6 detail". www.saatchigallery.com. Retrieved 13 February 2016.
  77. "Accident Nº 6 detail". www.saatchigallery.com. Retrieved 13 February 2016.
  78. "Wreckage in Art: A Driving Force in the Work of Jan Anders Nelson". medium.com. Retrieved May 23, 2016.
  79. "Andy Warhol Death And Disaster". www.youtube.com. Retrieved 14 February 2016.
  80. Kennedy, Randy (21 December 2011). "John Chamberlain, Who Wrested Rough Magic From Scrap Metal, Dies at 84". The New York Times. Retrieved 14 February 2016.
Wikimedia Commons has media related to:
This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.