Microsoft DNS

Microsoft DNS is the name given to the implementation of domain name system services provided in Microsoft Windows operating systems.

Microsoft DNS Users

Used by Microsoft for http://www.microsoft.com/

Overview

The Domain Name System support in Microsoft Windows NT, and thus its derivatives Windows 2000, Windows XP, and Windows Server 2003, comprises two clients and a server. Every Microsoft Windows machine has a DNS lookup client, to perform ordinary DNS lookups. Some machines have a Dynamic DNS client, to perform Dynamic DNS Update transactions, registering the machines' names and IP addresses. Some machines run a DNS server, to publish DNS data, to service DNS lookup requests from DNS lookup clients, and to service DNS update requests from DNS update clients.

The server software is only supplied with the server versions of Windows.

DNS lookup client

Applications perform DNS lookups with the aid of a DLL. They call library functions in the DLL, which in turn handle all communications with DNS servers (over UDP or TCP) and return the final results of the lookup back to the applications.

Microsoft's DNS client also has optional support for local caching, in the form of a DNS Client service (also known as DNSCACHE). Before they attempt to directly communicate with DNS servers, the library routines first attempt to make a local IPC connection to the DNS Client service on the machine. If there is one, and if such a connection can be made, they hand the actual work of dealing with the lookup over to the DNS Client service. The DNS Client service itself communicates with DNS servers, and caches the results that it receives.

Microsoft's DNS client is capable of talking to multiple DNS servers. The exact algorithm varies according to the version, and service pack level, of the operating system; but in general all communication is with a preferred DNS server until it fails to answer, whereupon communication switches to one of several alternative DNS servers.

The effects of running the DNS Client service

There are several minor differences in system behavior depending on whether the DNS Client service is started:

Differences from other systems

Linux distributions and various versions of Unix have a generalized name resolver layer. The resolver can be controlled to use a hosts file or Network Information Service (NIS), by configuring the Name Service Switch.

Dynamic DNS Update client

Whilst DNS lookups read DNS data, DNS updates write them. Both workstations and servers running Windows attempt to send Dynamic DNS update requests to DNS servers.

Workstations running Windows attempt to register their names and their IP addresses with DNS servers, so that other machines may locate them by name. Prior to Windows Vista (and Windows Server 2008) this registration is performed by the DHCP Client service. It is thus necessary to run the DHCP Client service on pre-Vista machines, even if DHCP isn't being used to configure the machine in order to dynamically register a machine's name and address for DNS lookup. The DHCP Client service registers name and address data whenever they are changed (either manually by an administrator or automatically by the granting or revocation of a DHCP lease). In Windows Vista (and Windows Server 2008) Microsoft moved the registration functionallity from the DHCP Client service to the DNS Client service.

Servers running Microsoft Windows also attempt to register other information, in addition to their names and IP addresses, such as the locations of the LDAP and Kerberos services that they provide.

DNS server

Microsoft Windows server operating systems can run the DNS Server service. This is a monolithic DNS server that provides many types of DNS service, including caching, Dynamic DNS update, zone transfer, and DNS notification. DNS notification implements a push mechanism for notifying a select set of secondary servers for a zone when it is updated.

Microsoft's "DNS Server" service was first introduced in Windows NT 3.51 as an add-on with Microsoft's collection of BackOffice services, but at the time was marked to be used for testing purposes only. It became notorious for incompatibility with BIND configuration files, in particular by lacking support for DNS wildcards and differing in its IPv6 implementation. Since the introduction, Microsoft has taken care to improve interoperability with BIND and other implementations in terms of zone file format, zone transfer, and other DNS protocol details.

As of 2004, it was the fourth most popular DNS server (counting BIND version 9 separately from versions 8 and 4) for the publication of DNS data.[2]

Like various other DNS servers, Microsoft's DNS server supports different database back ends. Microsoft's DNS server supports two such back ends. DNS data can be stored either in master files (also known as zone files) or in the Active Directory database itself. In the latter case, since Active Directory (rather than the DNS server) handles the actual replication of the database across multiple machines, the database can be modified on any server ("multiple-master replication"), and the addition or removal of a zone will be immediately propagated to all other DNS servers within the appropriate Active Directory "replication scope". (Contrast this with BIND, where when such changes are made, the list of zones, in the /etc/named.conf file, has to be explicitly updated on each individual server.)

Microsoft's DNS server can be administered using either a graphical user interface, the "DNS Management Console", or a command line interface, the dnscmd utility. New to Windows Server 2012 is a fully featured PowerShell provider for DNS server management.[3]

Common issues

Prior to Windows Server 2003 and Microsoft Windows 2000 Service Pack 3, the most common problem encountered with Microsoft's DNS server was cache pollution. Although Microsoft's DNS Server had a mechanism for properly dealing with cache pollution, the mechanism was turned off by default.[4]

In 2004, a common problem involved the feature of the Windows Server 2003 version of Microsoft's DNS server to use EDNS0, which a large number of firewalls could not cope with.[5]

See also

References

External links

This article is issued from Wikipedia - version of the 8/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.