Measurable function

A function is Lebesgue measurable if and only if the preimage of each of the sets is a Lebesgue measurable set.

In mathematics, particularly in measure theory, measurable functions are structure-preserving functions between measurable spaces; as such, they form a natural context for the theory of integration. Specifically, a function between measurable spaces is said to be measurable if the preimage of each measurable set is measurable, analogous to the situation of continuous functions between topological spaces. A measurable function is said to be bimeasurable if it is bijective and its inverse is also measurable.[1]

In probability theory, the σ-algebra often represents the set of available information, and a function (in this context a random variable) is measurable if and only if it represents an outcome that is knowable based on the available information. In contrast, functions that are not Lebesgue measurable are generally considered pathological, at least in the field of analysis.

Formal definition

Let and be measurable spaces, meaning that and are sets equipped with respective -algebras and . A function is said to be measurable if the preimage of under is in for every ; i.e.

The notion of measurability depends on the sigma algebras and . To emphasize this dependency, if is a measurable function, we will write

Caveat

This definition can be deceptively simple, however, as special care must be taken regarding the -algebras involved. In particular, when a function is said to be Lebesgue measurable, what is actually meant is that is a measurable function—that is, the domain and range represent different -algebras on the same underlying set. Here, is the -algebra of Lebesgue measurable sets, and is the Borel algebra on , the smallest -algebra containing all the open sets. As a result, the composition of Lebesgue-measurable functions need not be Lebesgue-measurable.

By convention a topological space is assumed to be equipped with the Borel algebra unless otherwise specified. Most commonly this space will be the real or complex numbers. For instance, a real-valued measurable function is a function for which the preimage of each Borel set is measurable. A complex-valued measurable function is defined analogously. In practice, some authors use measurable functions to refer only to real-valued measurable functions with respect to the Borel algebra.[2] If the values of the function lie in an infinite-dimensional vector space instead of or , usually other definitions of measurability are used, such as weak measurability and Bochner measurability.

Special measurable functions

Properties of measurable functions

Non-measurable functions

Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to find non-measurable functions.

See also

Notes

  1. Schervish, Mark J. (1997). Theory of statistics. New York, NY: Springer. p. 583. ISBN 978-0-387-94546-0.
  2. 1 2 3 4 Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6.
  3. Carothers, N. L. (2000). Real Analysis. Cambridge University Press. ISBN 0-521-49756-6.
  4. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
  5. Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3.
  6. Dudley, R. M. (2002). Real Analysis and Probability (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
  7. Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis, A Hitchhiker’s Guide (3 ed.). Springer. ISBN 978-3-540-29587-7.

External links

This article is issued from Wikipedia - version of the 10/21/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.