Lyell (Martian crater)
Lyell Crater is an impact crater in the Mare Australe quadrangle of Mars, located at 70.1°S latitude and 15.6°W longitude. It is 131.0 km in diameter and was named after Charles Lyell, and the name was approved in 1973 by the International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN).[1]
This picture was taken in the spring season on Mars when the temperature was rising. During the winter, much frost accumulates. When the temperature goes up in the spring, the frost disappears in the thin Martian atmosphere and leaves behind the dark ground. The surface appears covered with dark spots when this defrosting process is occurring.[2] The dark spots can be seen in some of the pictures below.
Many gullies are present in Lyell Crater.
Gullies
Martian gullies are small, incised networks of narrow channels and their associated downslope sediment deposits, found on the planet of Mars. They are named for their resemblance to terrestrial gullies. First discovered on images from Mars Global Surveyor, they occur on steep slopes, especially on the walls of craters. Usually, each gully has a dendritic alcove at its head, a fan-shaped apron at its base, and a single thread of incised channel linking the two, giving the whole gully an hourglass shape.[3] They are believed to be relatively young because they have few, if any craters. A subclass of gullies is also found cut into the faces of sand dunes which themselves considered to be quite young. On the basis of their form, aspects, positions, and location amongst and apparent interaction with features thought to be rich in water ice, many researchers believed that the processes carving the gullies involve liquid water. However, this remains a topic of active research. As soon as gullies were discovered,[3] researchers began to image many gullies over and over, looking for possible changes. By 2006, some changes were found.[4] Later, with further analysis it was determined that the changes could have occurred by dry granular flows rather than being driven by flowing water.[5][6][7] With continued observations many more changes were found in Gasa Crater and others.[8] With more repeated observations, more and more changes have been found; since the changes occur in the winter and spring, experts are tending to believe that gullies were formed from dry ice. Before-and-after images demonstrated the timing of this activity coincided with seasonal carbon-dioxide frost and temperatures that would not have allowed for liquid water. When dry ice frost changes to a gas, it may lubricate dry material to flow especially on steep slopes.[9][10][11] In some years frost, perhaps as thick as 1 meter.
-
Lyell (Martian crater), as seen by CTX camera (on Mars Reconnaissance Orbiter).
-
Gullies in Lyell crater, as seen by CTX camera (on Mars Reconnaissance Orbiter). Note: this is an enlargement of the previous image of Lyell crater.
-
Defrosting taking place in Lyell crater, as seen by CTX camera (on Mars Reconnaissance Orbiter). Dark areas are where frost has disappeared thereby showing dark ground. Note: this is an enlargement of a previous image of Lyell crater.
Why craters are important
The density of impact craters is used to determine the surface ages of Mars and other solar system bodies.[12] The older the surface, the more craters present. Crater shapes can reveal the presence of ground ice.
References
- ↑ "Gazetteer of Planetary Nomenclature | Lyell". usgs.gov. International Astronomical Union. Retrieved 4 March 2015.
- ↑ http://www.jpl.nasa.gov/news/news.php?release=2013-034
- 1 2 Malin, M., Edgett, K. 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335.
- ↑ Malin, M., K. Edgett, L. Posiolova, S. McColley, E. Dobrea. 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573_1577.
- ↑ Kolb, et al. 2010. Investigating gully flow emplacement mechanisms using apex slopes. Icarus 2008, 132-142.
- ↑ McEwen, A. et al. 2007. A closer look at water-related geological activity on Mars. Science 317, 1706-1708.
- ↑ Pelletier, J., et al. 2008. Recent bright gully deposits on Mars wet or dry flow? Geology 36, 211-214.
- ↑ NASA/Jet Propulsion Laboratory. "NASA orbiter finds new gully channel on Mars." ScienceDaily. ScienceDaily, 22 March 2014. www.sciencedaily.com/releases/2014/03/140322094409.htm
- ↑ http://www.jpl.nasa.gov/news/news.php?release=2014-226
- ↑ http://hirise.lpl.arizona.edu/ESP_032078_1420
- ↑ http://www.space.com/26534-mars-gullies-dry-ice.html?cmpid=557882
- ↑ http://www.lpi.usra.edu/publications/slidesets/stones/