List of games in game theory

Game theory studies strategic interaction between individuals in situations called games. Classes of these games have been given names. This is a list of the most commonly studied games

Explanation of features

Games can have several features, a few of the most common are listed here.

List of games

Game Players Strategies
per player
No. of pure strategy
Nash equilibria
Sequential Perfect
information
Zero sum
Battle of the sexes 2 2 2 No No No
Blotto games 2 variable variable No No Yes
Cake cutting N, usually 2 infinite variable[1] Yes Yes Yes
Centipede game 2 variable 1 Yes Yes No
Chicken (aka hawk-dove) 2 2 2 No No No
Coordination game N variable >2 No No No
Cournot game 2 infinite[2] 1 No No No
Deadlock 2 2 1 No No No
Dictator game 2 infinite[2] 1 N/A[3] N/A[3] Yes
Diner's dilemma N 2 1 No No No
Dollar auction 2 2 0 Yes Yes No
El Farol bar N 2 variable No No No
Game without a value 2 infinite 0 No No Yes
Guess 2/3 of the average N infinite 1 No No Maybe[4]
Kuhn poker 2 27 & 64 0 Yes No Yes
Matching pennies 2 2 0 No No Yes
Minority game N 2 variable No No No
Nash bargaining game 2 infinite[2] infinite[2] No No No
Peace war game N variable >2 Yes No No
Pirate game N infinite[2] infinite[2] Yes Yes No
Princess and monster game 2 infinite 0 No No Yes
Prisoner's dilemma 2 2 1 No No No
Public goods N infinite 1 No No No
Rock, paper, scissors 2 3 0 No No Yes
Screening game N variable variable Yes No No
Signaling game N variable variable Yes No No
Stag hunt 2 2 2 No No No
Traveler's dilemma 2 N >> 1 1 No No No
Truel 3 1-3 infinite Yes Yes No
Trust game 2 infinite 1 Yes Yes No
Ultimatum game 2 infinite[2] infinite[2] Yes Yes No
Volunteer's dilemma N 2 2 No No No
War of attrition 2 2 0 No No No

External links

Notes

  1. For the cake cutting problem, there is a simple solution if the object to be divided is homogenous; one person cuts, the other chooses who gets which piece (continued for each player). With a non-homogenous object, such as a half chocolate/half vanilla cake or a patch of land with a single source of water, the solutions are far more complex.
  2. 1 2 3 4 5 6 7 8 There may be finite strategies depending on how goods are divisible
  3. 1 2 Since the dictator game only involves one player actually choosing a strategy (the other does nothing), it cannot really be classified as sequential or perfect information.
  4. Potentially zero-sum, provided that the prize is split among all players who make an optimal guess. Otherwise non-zero sum.

References

This article is issued from Wikipedia - version of the 11/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.