Light dark matter

In astronomy and cosmology, light dark matter is dark matter weakly interacting massive particle (WIMP) candidates with masses less than 1 GeV.[1] These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter. The Lee-Weinberg bound [2] limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.

Some of the few loopholes allowing one to avoid the Lee-Weinberg bound without introducing new forces below the electroweak scale have been ruled out by accelerator experiments (i.e. CERN, Tevatron), and in decays of B mesons.[3]

A viable way of building light dark matter models is thus by postulating new light bosons. This increases the annihilation cross section and reduces the coupling of dark matter particles to the Standard Model making them consistent with accelerator experiments.[4][5][6]

Motivation

In recent years, light dark matter has become popular due in part to the many benefits of the theory. Sub-GeV dark matter has been used to explain the positron excess in the galactic center observed by INTEGRAL, excess gamma rays from the galactic center [7] and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments.[8]

See also

References

  1. Cassé, M.; Fayet, P. (4–9 July 2005). Light Dark Matter. 21st IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures". Paris. arXiv:astro-ph/0510490Freely accessible.
  2. Lee B.W.; Weinberg S. (1977). "Cosmological Lower Bound on Heavy-Neutrino Masses". Physical Review Letters. 39 (4): 165. Bibcode:1977PhRvL..39..165L. doi:10.1103/PhysRevLett.39.165.
  3. Bird, C.; Kowalewski, R.; Pospelov, M. (2006). "Dark matter pair-production in b s transitions". Mod. Phys. Lett. A. 21 (6): 457478. arXiv:hep-ph/0601090Freely accessible. Bibcode:2006MPLA...21..457B. doi:10.1142/S0217732306019852.
  4. Boehm, C.; Fayet, P. (2004). "Scalar Dark Matter candidates". Nuclear Physics B. 683: 219–263. arXiv:hep-ph/0305261Freely accessible. Bibcode:2004NuPhB.683..219B. doi:10.1016/j.nuclphysb.2004.01.015.
  5. Boehm, C.; Fayet, P.; Silk, J. (2004). "Light and Heavy Dark Matter Particles". Physical Review D. 69 (10): 101302. arXiv:hep-ph/0311143Freely accessible. Bibcode:2004PhRvD..69j1302B. doi:10.1103/PhysRevD.69.101302.
  6. Boehm, C. (2004). "Implications of a new light gauge boson for neutrino physics". Physical Review D. 70 (5): 055007. arXiv:hep-ph/0405240Freely accessible. Bibcode:2004PhRvD..70e5007B. doi:10.1103/PhysRevD.70.055007.
  7. Beacom, J.F.; Bell, N.F.; Bertone, G. (2005). "Gamma-Ray Constraint on Galactic Positron Production by MeV Dark Matter". Physical Review Letters. 94 (17): 171301. arXiv:astro-ph/0409403Freely accessible. Bibcode:2005PhRvL..94q1301B. doi:10.1103/PhysRevLett.94.171301. PMID 15904276.
  8. Boehm, C.; Ascasibar, Y. (2004). "More evidence in favour of Light Dark Matter particles?". Physical Review D. 70 (11): 115013. arXiv:hep-ph/0408213Freely accessible. Bibcode:2004PhRvD..70k5013B. doi:10.1103/PhysRevD.70.115013.

Further reading

This article is issued from Wikipedia - version of the 10/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.