Leptomycin

Leptomycin B
Names
IUPAC name
(2E,5S,6R,7S,9R,10E,12E,15R,16Z,18E)-17-Ethyl-6-hydroxy-3,5,7,9,11,15-hexamethyl-19-[(2S,3S)-3-methyl-6-oxo-2,3-dihydropyran-2-yl]-8-oxononadeca-2,10,12,16,18-pentaenoic acid
Identifiers
87081-35-4 YesY
3D model (Jmol) Interactive image
ChemSpider 21106330 YesY
ECHA InfoCard 100.125.530
PubChem 6917907
Properties
C33H48O6
Molar mass 540.74 g·mol−1
Density 1.072 g/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Leptomycins are secondary metabolites produced by Streptomyces spp.

Leptomycin B (LMB) was originally discovered as a potent anti-fungal antibiotic.[1] Leptomycin B was found to cause cell elongation of the fission yeast Schizosaccharomyces pombe. Since then this elongation effect has been used for the bioassay of leptomycin. However, recent data shows that leptomycin causes G1 cell cycle arrest in mammalian cells and is a potent anti-tumor agent against murine experimental tumors in combination therapy.[2]

Leptomycin B has been shown to be a potent and specific nuclear export inhibitor in human[3] and the fission yeast S. pombe.[4] Leptomycin B alkylates and inhibits CRM1 (chromosomal region maintenance)/exportin 1 (XPO1), a protein required for nuclear export of proteins containing a nuclear export sequence (NES), by glycosylating a cysteine residue (cysteine 529 in S. pombe).[5] In addition to antifungal and antibacterial activities, leptomycin B blocks the cell cycle and is a potent anti-tumor agent. At low nM concentrations, leptomycin B blocks the nuclear export of many proteins including HIV-1 Rev, MAPK/ERK, and NF-κB/IκB, and it inhibits the inactivation of p53.[6] Leptomycin B also inhibits the export and translation of many RNAs, including COX-2 and c-Fos mRNAs, by inhibiting export of ribonucleoproteins.

Leptomycin A (LPA) was discovered together with LMB. LMB is twice as potent as LPA.

References

  1. Hamamoto T, Seto H, Beppu T (1983). "Leptomycins A and B, new antifungal antibiotics. II. Structure elucidation". J. Antibiot. 36 (6): 646–50. doi:10.7164/antibiotics.36.646. PMID 6874586.
  2. Lu, Chuanwen; Changxia Shao; Everardo Cobos; Kamaleshwar P. Singh; Weimin Gao (March 2012). "Chemotherapeutic Sensitization of Leptomycin B Resistant Lung Cancer Cells by Pretreatment with Doxorubicin". PLoS ONE. United States. 7 (3). doi:10.1371/journal.pone.0032895. ISSN 1932-6203. PMC 3296751Freely accessible. PMID 22412944.
  3. Kudo N, Wolff B, Sekimoto T, et al. (August 1998). "Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1". Exp. Cell Res. 242 (2): 540–7. doi:10.1006/excr.1998.4136. PMID 9683540.
  4. Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (March 1994). "Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression". J. Biol. Chem. 269 (9): 6320–4. PMID 8119981.
  5. Kudo N, Matsumori N, Taoka H, et al. (August 1999). "Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region". Proc. Natl. Acad. Sci. U.S.A. 96 (16): 9112–7. doi:10.1073/pnas.96.16.9112. PMC 17741Freely accessible. PMID 10430904.
  6. Hietanen S, Lain S, Krausz E, Blattner C, Lane DP (2000). "Activation of p53 in cervical carcinoma cells by small molecules.". Proc Natl Acad Sci U S A. 97 (15): 8501–6. doi:10.1073/pnas.97.15.8501. PMC 26977Freely accessible. PMID 10900010.

Original data copied with permission from Leptomycin B manufacturer product page (Fermentek)

This article is issued from Wikipedia - version of the 11/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.