Biophysics

Biophysics or biological physics is an interdisciplinary science that applies the approaches and methods of physics to study biological systems. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, nanotechnology, bioengineering, computational biology, biomechanics and systems biology.

The term biophysics was originally introduced by Karl Pearson in 1892.[1][2]

Overview

Molecular biophysics typically addresses biological questions similar to those in biochemistry and molecular biology, but more quantitatively, seeking to find the physical underpinnings of biomolecular phenomena. Scientists in this field conduct research concerned with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis, as well as how these interactions are regulated. A great variety of techniques are used to answer these questions.

Fluorescent imaging techniques, as well as electron microscopy, x-ray crystallography, NMR spectroscopy, atomic force microscopy (AFM) and small-angle scattering (SAS) both with X-rays and neutrons (SAXS/SANS) are often used to visualize structures of biological significance. Protein dynamics can be observed by neutron spin echo spectroscopy. Conformational change in structure can be measured using techniques such as dual polarisation interferometry, circular dichroism, SAXS and SANS. Direct manipulation of molecules using optical tweezers or AFM, can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting entities which can be understood e.g. through statistical mechanics, thermodynamics and chemical kinetics. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual molecules or complexes of molecules.

In addition to traditional (i.e. molecular and cellular) biophysical topics like structural biology or enzyme kinetics, modern biophysics encompasses an extraordinarily broad range of research, from bioelectronics to quantum biology involving both experimental and theoretical tools. It is becoming increasingly common for biophysicists to apply the models and experimental techniques derived from physics, as well as mathematics and statistics (see biomathematics), to larger systems such as tissues, organs, populations and ecosystems. Biophysical models are used extensively in the study of electrical conduction in single neurons, as well as neural circuit analysis in both tissue and whole brain.

History

Some of the earlier studies in biophysics were conducted in the 1840s by a group known as the Berlin school of physiologists. Among its members were pioneers such as Hermann von Helmholtz, Ernst Heinrich Weber, Carl F. W. Ludwig, and Johannes Peter Müller.[3] Biophysics might even be seen as dating back to the studies of Luigi Galvani.

The popularity of the field rose when the book What Is Life? by Erwin Schrödinger was published. Since 1957 biophysicists have organized themselves into the Biophysical Society which now has about 9,000 members over the world.[4]

Some authors such as Robert Rosen criticize biophysics on the ground that the biophysical method does not take into account the specificity of biological phenomena[5]

Focus as a subfield

While some colleges and universities have dedicated departments of biophysics, usually at the graduate level, many do not have university-level biophysics departments, instead having groups in related departments such as molecular biology, biochemistry, chemistry, computer science, mathematics, medicine, pharmacology, physiology, physics, and neuroscience. Depending on the strengths of a department at a university differing emphasis will be given to fields of biophysics. What follows is a list of examples of how each department applies its efforts toward the study of biophysics. This list is hardly all inclusive. Nor does each subject of study belong exclusively to any particular department. Each academic institution makes its own rules and there is much overlap between departments.

decohered isomers to yield time-dependent base substitutions. These studies imply applications in quantum computing.

Many biophysical techniques are unique to this field. Research efforts in biophysics are often initiated by scientists who were traditional physicists, chemists, and biologists by training.

See also

References

Citations

  1. Pearson, Karl (1892). The Grammar of Science. p. 470.
  2. Roland Glaser. Biophysics: An Introduction. Springer; 23 April 2012. ISBN 978-3-642-25212-9.
  3. Donald R. Franceschetti. Applied Science - 5 Volume Set. SALEM PressINC; 15 May 2012. ISBN 978-1-58765-781-8. p. 234.
  4. Joe Rosen; Lisa Quinn Gothard. Encyclopedia of Physical Science. Infobase Publishing; 2009. ISBN 978-0-8160-7011-4. p. 49.
  5. Longo, Giuseppe; Montévil, Maël (2012-01-01). "The inert vs. the living state of matter: extended criticality, time geometry, anti-entropy – an overview". Fractal Physiology. 3: 39. doi:10.3389/fphys.2012.00039. PMC 3286818Freely accessible. PMID 22375127.

Sources

External links

At Wikiversity, you can learn more and teach others about Biophysics at the Department of Biophysics
This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.