Genetic algorithm

The 2006 NASA ST5 spacecraft antenna. This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. It is known as an evolved antenna.

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on bio-inspired operators such as mutation, crossover and selection.[1]

Methodology

Optimization problems

In a genetic algorithm, a population of candidate solutions (called individuals, creatures, or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution has a set of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible.[2]

The evolution usually starts from a population of randomly generated individuals, and is an iterative process, with the population in each iteration called a generation. In each generation, the fitness of every individual in the population is evaluated; the fitness is usually the value of the objective function in the optimization problem being solved. The more fit individuals are stochastically selected from the current population, and each individual's genome is modified (recombined and possibly randomly mutated) to form a new generation. The new generation of candidate solutions is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population.

A typical genetic algorithm requires:

  1. a genetic representation of the solution domain,
  2. a fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as an array of bits.[2] Arrays of other types and structures can be used in essentially the same way. The main property that makes these genetic representations convenient is that their parts are easily aligned due to their fixed size, which facilitates simple crossover operations. Variable length representations may also be used, but crossover implementation is more complex in this case. Tree-like representations are explored in genetic programming and graph-form representations are explored in evolutionary programming; a mix of both linear chromosomes and trees is explored in gene expression programming.

Once the genetic representation and the fitness function are defined, a GA proceeds to initialize a population of solutions and then to improve it through repetitive application of the mutation, crossover, inversion and selection operators.

Initialization

The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. Often, the initial population is generated randomly, allowing the entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be found.

Selection

During each successive generation, a portion of the existing population is selected to breed a new generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain selection methods rate the fitness of each solution and preferentially select the best solutions. Other methods rate only a random sample of the population, as the former process may be very time-consuming.

The fitness function is defined over the genetic representation and measures the quality of the represented solution. The fitness function is always problem dependent. For instance, in the knapsack problem one wants to maximize the total value of objects that can be put in a knapsack of some fixed capacity. A representation of a solution might be an array of bits, where each bit represents a different object, and the value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such representation is valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise.

In some problems, it is hard or even impossible to define the fitness expression; in these cases, a simulation may be used to determine the fitness function value of a phenotype (e.g. computational fluid dynamics is used to determine the air resistance of a vehicle whose shape is encoded as the phenotype), or even interactive genetic algorithms are used.

Genetic operators

The next step is to generate a second generation population of solutions from those selected through a combination of genetic operators: crossover (also called recombination), and mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from the pool selected previously. By producing a "child" solution using the above methods of crossover and mutation, a new solution is created which typically shares many of the characteristics of its "parents". New parents are selected for each new child, and the process continues until a new population of solutions of appropriate size is generated. Although reproduction methods that are based on the use of two parents are more "biology inspired", some research[3][4] suggests that more than two "parents" generate higher quality chromosomes.

These processes ultimately result in the next generation population of chromosomes that is different from the initial generation. Generally the average fitness will have increased by this procedure for the population, since only the best organisms from the first generation are selected for breeding, along with a small proportion of less fit solutions. These less fit solutions ensure genetic diversity within the genetic pool of the parents and therefore ensure the genetic diversity of the subsequent generation of children.

Opinion is divided over the importance of crossover versus mutation. There are many references in Fogel (2006) that support the importance of mutation-based search.

Although crossover and mutation are known as the main genetic operators, it is possible to use other operators such as regrouping, colonization-extinction, or migration in genetic algorithms.[5]

It is worth tuning parameters such as the mutation probability, crossover probability and population size to find reasonable settings for the problem class being worked on. A very small mutation rate may lead to genetic drift (which is non-ergodic in nature). A recombination rate that is too high may lead to premature convergence of the genetic algorithm. A mutation rate that is too high may lead to loss of good solutions, unless elitist selection is employed.

Termination

This generational process is repeated until a termination condition has been reached. Common terminating conditions are:

The building block hypothesis

Genetic algorithms are simple to implement, but their behavior is difficult to understand. In particular it is difficult to understand why these algorithms frequently succeed at generating solutions of high fitness when applied to practical problems. The building block hypothesis (BBH) consists of:

  1. A description of a heuristic that performs adaptation by identifying and recombining "building blocks", i.e. low order, low defining-length schemata with above average fitness.
  2. A hypothesis that a genetic algorithm performs adaptation by implicitly and efficiently implementing this heuristic.

Goldberg describes the heuristic as follows:

"Short, low order, and highly fit schemata are sampled, recombined [crossed over], and resampled to form strings of potentially higher fitness. In a way, by working with these particular schemata [the building blocks], we have reduced the complexity of our problem; instead of building high-performance strings by trying every conceivable combination, we construct better and better strings from the best partial solutions of past samplings.
"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."[6]

Despite of the lack of consensus regarding the validity of the building-block hypothesis, it has been consistently evaluated and used as reference throughout the years. Many estimation of distribution algorithms, for example, have been proposed in an attempt to provide an environment in which the hypothesis would hold.[7][8] Although good results have been reported for some classes of problems, skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation for GAs efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand its limitations from the perspective of estimation of distribution algorithms.[9][10][11]

Limitations

There are limitations of the use of a genetic algorithm compared to alternative optimization algorithms:

Variants

Chromosome representation

The simplest algorithm represents each chromosome as a bit string. Typically, numeric parameters can be represented by integers, though it is possible to use floating point representations. The floating point representation is natural to evolution strategies and evolutionary programming. The notion of real-valued genetic algorithms has been offered but is really a misnomer because it does not really represent the building block theory that was proposed by John Henry Holland in the 1970s. This theory is not without support though, based on theoretical and experimental results (see below). The basic algorithm performs crossover and mutation at the bit level. Other variants treat the chromosome as a list of numbers which are indexes into an instruction table, nodes in a linked list, hashes, objects, or any other imaginable data structure. Crossover and mutation are performed so as to respect data element boundaries. For most data types, specific variation operators can be designed. Different chromosomal data types seem to work better or worse for different specific problem domains.

When bit-string representations of integers are used, Gray coding is often employed. In this way, small changes in the integer can be readily affected through mutations or crossovers. This has been found to help prevent premature convergence at so called Hamming walls, in which too many simultaneous mutations (or crossover events) must occur in order to change the chromosome to a better solution.

Other approaches involve using arrays of real-valued numbers instead of bit strings to represent chromosomes. Results from the theory of schemata suggest that in general the smaller the alphabet, the better the performance, but it was initially surprising to researchers that good results were obtained from using real-valued chromosomes. This was explained as the set of real values in a finite population of chromosomes as forming a virtual alphabet (when selection and recombination are dominant) with a much lower cardinality than would be expected from a floating point representation.[14][15]

An expansion of the Genetic Algorithm accessible problem domain can be obtained through more complex encoding of the solution pools by concatenating several types of heterogenously encoded genes into one chromosome.[16] This particular approach allows for solving optimization problems that require vastly disparate definition domains for the problem parameters. For instance, in problems of cascaded controller tuning, the internal loop controller structure can belong to a conventional regulator of three parameters, whereas the external loop could implement a linguistic controller (such as a fuzzy system) which has an inherently different description. This particular form of encoding requires a specialized crossover mechanism that recombines the chromosome by section, and it is a useful tool for the modelling and simulation of complex adaptive systems, especially evolution processes.

Elitism

A practical variant of the general process of constructing a new population is to allow the best organism(s) from the current generation to carry over to the next, unaltered. This strategy is known as elitist selection and guarantees that the solution quality obtained by the GA will not decrease from one generation to the next.[17]

Parallel implementations

Parallel implementations of genetic algorithms come in two flavors. Coarse-grained parallel genetic algorithms assume a population on each of the computer nodes and migration of individuals among the nodes. Fine-grained parallel genetic algorithms assume an individual on each processor node which acts with neighboring individuals for selection and reproduction. Other variants, like genetic algorithms for online optimization problems, introduce time-dependence or noise in the fitness function.

Adaptive GAs

Genetic algorithms with adaptive parameters (adaptive genetic algorithms, AGAs) is another significant and promising variant of genetic algorithms. The probabilities of crossover (pc) and mutation (pm) greatly determine the degree of solution accuracy and the convergence speed that genetic algorithms can obtain. Instead of using fixed values of pc and pm, AGAs utilize the population information in each generation and adaptively adjust the pc and pm in order to maintain the population diversity as well as to sustain the convergence capacity. In AGA (adaptive genetic algorithm),[18] the adjustment of pc and pm depends on the fitness values of the solutions. In CAGA (clustering-based adaptive genetic algorithm),[19] through the use of clustering analysis to judge the optimization states of the population, the adjustment of pc and pm depends on these optimization states. It can be quite effective to combine GA with other optimization methods. GA tends to be quite good at finding generally good global solutions, but quite inefficient at finding the last few mutations to find the absolute optimum. Other techniques (such as simple hill climbing) are quite efficient at finding absolute optimum in a limited region. Alternating GA and hill climbing can improve the efficiency of GA while overcoming the lack of robustness of hill climbing.

This means that the rules of genetic variation may have a different meaning in the natural case. For instance provided that steps are stored in consecutive order crossing over may sum a number of steps from maternal DNA adding a number of steps from paternal DNA and so on. This is like adding vectors that more probably may follow a ridge in the phenotypic landscape. Thus, the efficiency of the process may be increased by many orders of magnitude. Moreover, the inversion operator has the opportunity to place steps in consecutive order or any other suitable order in favour of survival or efficiency. (See for instance [20] or example in travelling salesman problem, in particular the use of an edge recombination operator.)

A variation, where the population as a whole is evolved rather than its individual members, is known as gene pool recombination.

A number of variations have been developed to attempt to improve performance of GAs on problems with a high degree of fitness epistasis, i.e. where the fitness of a solution consists of interacting subsets of its variables. Such algorithms aim to learn (before exploiting) these beneficial phenotypic interactions. As such, they are aligned with the Building Block Hypothesis in adaptively reducing disruptive recombination. Prominent examples of this approach include the mGA,[21] GEMGA[22] and LLGA.[23]

Problem domains

Problems which appear to be particularly appropriate for solution by genetic algorithms include timetabling and scheduling problems, and many scheduling software packages are based on GAs. GAs have also been applied to engineering.[24] Genetic algorithms are often applied as an approach to solve global optimization problems.

As a general rule of thumb genetic algorithms might be useful in problem domains that have a complex fitness landscape as mixing, i.e., mutation in combination with crossover, is designed to move the population away from local optima that a traditional hill climbing algorithm might get stuck in. Observe that commonly used crossover operators cannot change any uniform population. Mutation alone can provide ergodicity of the overall genetic algorithm process (seen as a Markov chain).

Examples of problems solved by genetic algorithms include: mirrors designed to funnel sunlight to a solar collector,[25] antennae designed to pick up radio signals in space,[26] and walking methods for computer figures.[27]

In his Algorithm Design Manual, Skiena advises against genetic algorithms for any task:

[I]t is quite unnatural to model applications in terms of genetic operators like mutation and crossover on bit strings. The pseudobiology adds another level of complexity between you and your problem. Second, genetic algorithms take a very long time on nontrivial problems. [...] [T]he analogy with evolution—where significant progress require [sic] millions of years—can be quite appropriate.

[...]

I have never encountered any problem where genetic algorithms seemed to me the right way to attack it. Further, I have never seen any computational results reported using genetic algorithms that have favorably impressed me. Stick to simulated annealing for your heuristic search voodoo needs.

Steven Skiena[28]:267

History

In 1950, Alan Turing proposed a "learning machine" which would parallel the principles of evolution.[29] Computer simulation of evolution started as early as in 1954 with the work of Nils Aall Barricelli, who was using the computer at the Institute for Advanced Study in Princeton, New Jersey.[30][31] His 1954 publication was not widely noticed. Starting in 1957,[32] the Australian quantitative geneticist Alex Fraser published a series of papers on simulation of artificial selection of organisms with multiple loci controlling a measurable trait. From these beginnings, computer simulation of evolution by biologists became more common in the early 1960s, and the methods were described in books by Fraser and Burnell (1970)[33] and Crosby (1973).[34] Fraser's simulations included all of the essential elements of modern genetic algorithms. In addition, Hans-Joachim Bremermann published a series of papers in the 1960s that also adopted a population of solution to optimization problems, undergoing recombination, mutation, and selection. Bremermann's research also included the elements of modern genetic algorithms.[35] Other noteworthy early pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are reprinted by Fogel (1998).[36]

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability to play a simple game,[37] artificial evolution became a widely recognized optimization method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the 1960s and early 1970s Rechenberg's group was able to solve complex engineering problems through evolution strategies.[38][39][40][41] Another approach was the evolutionary programming technique of Lawrence J. Fogel, which was proposed for generating artificial intelligence. Evolutionary programming originally used finite state machines for predicting environments, and used variation and selection to optimize the predictive logics. Genetic algorithms in particular became popular through the work of John Holland in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata, conducted by Holland and his students at the University of Michigan. Holland introduced a formalized framework for predicting the quality of the next generation, known as Holland's Schema Theorem. Research in GAs remained largely theoretical until the mid-1980s, when The First International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania.

Commercial products

In the late 1980s, General Electric started selling the world's first genetic algorithm product, a mainframe-based toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the world's first commercial GA product for desktop computers. The New York Times technology writer John Markoff wrote[42] about Evolver in 1990, and it remained the only interactive commercial genetic algorithm until 1995.[43] Evolver was sold to Palisade in 1997, translated into several languages, and is currently in its 6th version.[44]

Related techniques

Parent fields

Genetic algorithms are a sub-field of:

Related fields

Evolutionary algorithms

Evolutionary algorithms is a sub-field of evolutionary computing.

Swarm intelligence

Main article: Swarm intelligence

Swarm intelligence is a sub-field of evolutionary computing.

Other evolutionary computing algorithms

Evolutionary computation is a sub-field of the metaheuristic methods.

Other metaheuristic methods

Metaheuristic methods broadly fall within stochastic optimisation methods.

Other stochastic optimisation methods

See also

References

  1. Mitchell 1996, p. 2.
  2. 1 2 Whitley 1994, p. 66.
  3. Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: 7887. ISBN 3-540-58484-6.
  4. Ting, Chuan-Kang (2005). "On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection". Advances in Artificial Life: 403412. ISBN 978-3-540-28848-0.
  5. Akbari, Ziarati (2010). "A multilevel evolutionary algorithm for optimizing numerical functions" IJIEC 2 (2011): 419430
  6. Goldberg 1989, p. 41.
  7. Harik, Georges R.; Lobo, Fernando G.; Sastry, Kumara (1 January 2006). "Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA)". Scalable Optimization via Probabilistic Modeling. Springer Berlin Heidelberg: 39–61. doi:10.1007/978-3-540-34954-9_3.
  8. Pelikan, Martin; Goldberg, David E.; Cantú-Paz, Erick (1 January 1999). "BOA: The Bayesian Optimization Algorithm". Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1. Morgan Kaufmann Publishers Inc.: 525–532.
  9. Coffin, David; Smith, Robert E. (1 January 2008). "Linkage Learning in Estimation of Distribution Algorithms". Linkage in Evolutionary Computation. Springer Berlin Heidelberg: 141–156. doi:10.1007/978-3-540-85068-7_7.
  10. Echegoyen, Carlos; Mendiburu, Alexander; Santana, Roberto; Lozano, Jose A. (8 November 2012). "On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms". Evolutionary Computation. 21 (3): 471–495. doi:10.1162/EVCO_a_00095. ISSN 1063-6560.
  11. Sadowski, Krzysztof L.; Bosman, Peter A.N.; Thierens, Dirk (1 January 2013). "On the Usefulness of Linkage Processing for Solving MAX-SAT". Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. ACM: 853–860. doi:10.1145/2463372.2463474.
  12. Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi (19 November 2012). "An efficient algorithm for function optimization: modified stem cells algorithm". Central European Journal of Engineering. 3 (1): 36–50. doi:10.2478/s13531-012-0047-8.
  13. Wolpert, D.H., Macready, W.G., 1995. No Free Lunch Theorems for Optimisation. Santa Fe Institute, SFI-TR-05-010, Santa Fe.
  14. Goldberg, David E. (1991). "The theory of virtual alphabets". Parallel Problem Solving from Nature, Lecture Notes in Computer Science. 496: 13–22. doi:10.1007/BFb0029726. Retrieved 2 July 2013.
  15. Janikow, C. Z.; Michalewicz, Z. (1991). "An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms" (PDF). Proceedings of the Fourth International Conference on Genetic Algorithms: 31–36. Retrieved 2 July 2013.
  16. Patrascu, M.; Stancu, A.F.; Pop, F. (2014). "HELGA: a heterogeneous encoding lifelike genetic algorithm for population evolution modeling and simulation". Soft Computing. 18: 2565–2576. doi:10.1007/s00500-014-1401-y.
  17. Baluja, Shumeet; Caruana, Rich (1995). Removing the genetics from the standard genetic algorithm (PDF). ICML.
  18. Srinivas. M and Patnaik. L, "Adaptive probabilities of crossover and mutation in genetic algorithms," IEEE Transactions on System, Man and Cybernetics, vol.24, no.4, pp.656667, 1994.
  19. ZHANG. J, Chung. H and Lo. W. L, "Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms", IEEE Transactions on Evolutionary Computation vol.11, no.3, pp. 326335, 2007.
  20. Evolution-in-a-nutshell
  21. D.E. Goldberg, B. Korb, and K. Deb. "Messy genetic algorithms: Motivation, analysis, and first results". Complex Systems, 5(3):493–530, October 1989.
  22. Gene expression: The missing link in evolutionary computation
  23. G. Harik. Learning linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, Dept. Computer Science, University of Michigan, Ann Arbour, 1997
  24. Tomoiagă B, Chindriş M, Sumper A, Sudria-Andreu A, Villafafila-Robles R. Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II. Energies. 2013; 6(3):1439-1455.
  25. Gross, Bill. "A solar energy system that tracks the sun". TED. Retrieved 20 November 2013.
  26. Hornby, G. S.; Linden, D. S.; Lohn, J. D., Automated Antenna Design with Evolutionary Algorithms (PDF)
  27. http://goatstream.com/research/papers/SA2013/index.html
  28. Skiena, Steven (2010). The Algorithm Design Manual (2nd ed.). Springer Science+Business Media. ISBN 1-849-96720-2.
  29. Turing, Alan M. "Computing machinery and intelligence". Mind. LIX (238): 433–460. doi:10.1093/mind/LIX.236.433.
  30. Barricelli, Nils Aall (1954). "Esempi numerici di processi di evoluzione". Methodos: 45–68.
  31. Barricelli, Nils Aall (1957). "Symbiogenetic evolution processes realized by artificial methods". Methodos: 143–182.
  32. Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I. Introduction". Aust. J. Biol. Sci. 10: 484–491.
  33. Fraser, Alex; Burnell, Donald (1970). Computer Models in Genetics. New York: McGraw-Hill. ISBN 0-07-021904-4.
  34. Crosby, Jack L. (1973). Computer Simulation in Genetics. London: John Wiley & Sons. ISBN 0-471-18880-8.
  35. 02.27.96 - UC Berkeley's Hans Bremermann, professor emeritus and pioneer in mathematical biology, has died at 69
  36. Fogel, David B. (editor) (1998). Evolutionary Computation: The Fossil Record. New York: IEEE Press. ISBN 0-7803-3481-7.
  37. Barricelli, Nils Aall (1963). "Numerical testing of evolution theories. Part II. Preliminary tests of performance, symbiogenesis and terrestrial life". Acta Biotheoretica (16): 99–126.
  38. Rechenberg, Ingo (1973). Evolutionsstrategie. Stuttgart: Holzmann-Froboog. ISBN 3-7728-0373-3.
  39. Schwefel, Hans-Paul (1974). Numerische Optimierung von Computer-Modellen (PhD thesis).
  40. Schwefel, Hans-Paul (1977). Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie : mit einer vergleichenden Einführung in die Hill-Climbing- und Zufallsstrategie. Basel; Stuttgart: Birkhäuser. ISBN 3-7643-0876-1.
  41. Schwefel, Hans-Paul (1981). Numerical optimization of computer models (Translation of 1977 Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie. Chichester ; New York: Wiley. ISBN 0-471-09988-0.
  42. Markoff, John (29 August 1990). "What's the Best Answer? It's Survival of the Fittest". New York Times. Retrieved 2016-07-13.
  43. Ruggiero, Murray A.. (2009-08-01) Fifteen years and counting. Futuresmag.com. Retrieved on 2013-08-07.
  44. Evolver: Sophisticated Optimization for Spreadsheets. Palisade. Retrieved on 2013-08-07.
  45. Pelikan, Martin; Goldberg, David E.; Cantú-Paz, Erick (1 January 1999). "BOA: The Bayesian Optimization Algorithm". Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1. Morgan Kaufmann Publishers Inc.: 525–532.
  46. Pelikan, Martin (2005). Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms (1st ed. ed.). Berlin [u.a.]: Springer. ISBN 978-3-540-23774-7.
  47. Thierens, Dirk (11 September 2010). "The Linkage Tree Genetic Algorithm". Parallel Problem Solving from Nature, PPSN XI. Springer Berlin Heidelberg: 264–273. doi:10.1007/978-3-642-15844-5_27.
  48. Ferreira, C. "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems" (PDF). Complex Systems, Vol. 13, issue 2: 87-129.
  49. Falkenauer, Emanuel (1997). Genetic Algorithms and Grouping Problems. Chichester, England: John Wiley & Sons Ltd. ISBN 978-0-471-97150-4.
  50. Zlochin, Mark; Birattari, Mauro; Meuleau, Nicolas; Dorigo, Marco (1 October 2004). "Model-Based Search for Combinatorial Optimization: A Critical Survey". Annals of Operations Research. 131 (1-4): 373–395. doi:10.1023/B:ANOR.0000039526.52305.af. ISSN 0254-5330.
  51. Rania Hassan, Babak Cohanim, Olivier de Weck, Gerhard Vente r (2005) A comparison of particle swarm optimization and the genetic algorithm
  52. Baudry, Benoit; Franck Fleurey; Jean-Marc Jézéquel; Yves Le Traon (March–April 2005). "Automatic Test Case Optimization: A Bacteriologic Algorithm" (PDF). IEEE Software. IEEE Computer Society. 22 (2): 76–82. doi:10.1109/MS.2005.30. Retrieved 9 August 2009.
  53. Civicioglu, P. (2012). "Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by Using Differential Search Algorithm". Computers &Geosciences. 46: 229–247. doi:10.1016/j.cageo.2011.12.011.
  54. Kjellström, G. (December 1991). "On the Efficiency of Gaussian Adaptation". Journal of Optimization Theory and Applications. 71 (3): 589–597. doi:10.1007/BF00941405.

Bibliography

  • Banzhaf, Wolfgang; Nordin, Peter; Keller, Robert; Francone, Frank (1998). Genetic Programming An Introduction. San Francisco, CA: Morgan Kaufmann. ISBN 978-1558605107. 
  • Bies, Robert R.; Muldoon, Matthew F.; Pollock, Bruce G.; Manuck, Steven; Smith, Gwenn; Sale, Mark E. (2006). "A Genetic Algorithm-Based, Hybrid Machine Learning Approach to Model Selection". Journal of Pharmacokinetics and Pharmacodynamics. Netherlands: Springer: 196–221. 
  • Cha, Sung-Hyuk; Tappert, Charles C. (2009). "A Genetic Algorithm for Constructing Compact Binary Decision Trees". Journal of Pattern Recognition Research. 4 (1): 1–13. doi:10.13176/11.44. 
  • Fraser, Alex S. (1957). "Simulation of Genetic Systems by Automatic Digital Computers. I. Introduction". Australian Journal of Biological Sciences. 10: 484–491. 
  • Goldberg, David (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley Professional. ISBN 978-0201157673. 
  • Goldberg, David (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Norwell, MA: Kluwer Academic Publishers. ISBN 978-1402070983. 
  • Fogel, David. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (3rd ed.). Piscataway, NJ: IEEE Press. ISBN 978-0471669517. 
  • Holland, John (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press. ISBN 978-0262581110. 
  • Koza, John (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press. ISBN 978-0262111706. 
  • Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag. ISBN 978-3540606765. 
  • Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press. ISBN 9780585030944. 
  • Poli, R.; Langdon, W. B.; McPhee, N. F. (2008). A Field Guide to Genetic Programming. Lulu.com, freely available from the internet. ISBN 978-1-4092-0073-4. 
  • Rechenberg, Ingo (1994): Evolutionsstrategie '94, Stuttgart: Fromman-Holzboog.
  • Schmitt, Lothar M; Nehaniv, Chrystopher L; Fujii, Robert H (1998), Linear analysis of genetic algorithms, Theoretical Computer Science 208: 111148
  • Schmitt, Lothar M (2001), Theory of Genetic Algorithms, Theoretical Computer Science 259: 161
  • Schmitt, Lothar M (2004), Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling, Theoretical Computer Science 310: 181231
  • Schwefel, Hans-Paul (1974): Numerische Optimierung von Computer-Modellen (PhD thesis). Reprinted by Birkhäuser (1977).
  • Vose, Michael (1999). The Simple Genetic Algorithm: Foundations and Theory. Cambridge, MA: MIT Press. ISBN 978-0262220583. 
  • Whitley, Darrell (1994). "A genetic algorithm tutorial". Statistics and Computing. 4 (2): 65–85. doi:10.1007/BF00175354. 
  • Hingston, Philip; Barone, Luigi; Michalewicz, Zbigniew (2008). Design by Evolution: Advances in Evolutionary Design. Springer. ISBN 978-3540741091. 
  • Eiben, Agoston; Smith, James (2003). Introduction to Evolutionary Computing. Springer. ISBN 978-3540401841. 

External links

Resources

Tutorials

This article is issued from Wikipedia - version of the 11/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.