Fundamental representation

In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan. Thus in a certain sense, the fundamental representations are the elementary building blocks for arbitrary finite-dimensional representations.

Examples

Explanation

The irreducible representations of a simply-connected compact Lie group are indexed by their highest weights. These weights are the lattice points in an orthant Q+ in the weight lattice of the Lie group consisting of the dominant integral weights. It can be proved that there exists a set of fundamental weights, indexed by the vertices of the Dynkin diagram, such that any dominant integral weight is a non-negative integer linear combinations of the fundamental weights. The corresponding irreducible representations are the fundamental representations of the Lie group. From the expansion of a dominant weight in terms of the fundamental weights one can take a corresponding tensor product of the fundamental representations and extract one copy of the irreducible representation corresponding to that dominant weight.

Other uses

Outside of Lie theory, the term fundamental representation is sometimes loosely used to refer to a smallest-dimensional faithful representation, though this is also often called the standard or defining representation (a term referring more to the history, rather than having a well-defined mathematical meaning).

References

Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249, ISBN 978-0-387-97527-6. 

This article is issued from Wikipedia - version of the 11/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.