CLOUD experiment

This article is about the CERN experiment. For clouds in meteorology, see Cloud. For other uses, see Cloud (disambiguation).

Cosmics Leaving Outdoor Droplets or CLOUD[1] is an experiment being run at CERN by a group of researchers led by Jasper Kirkby to investigate the microphysics between galactic cosmic rays (GCRs) and aerosols under controlled conditions. The experiment began operation in November 2009.[2]

The primary goal is to understand the influence of galactic cosmic rays (GCRs) on aerosols and clouds, and their implications for climate. Although its design is optimised to address the cosmic ray question, (as posed by Henrik Svensmark and colleagues in 1997) CLOUD allows as well to measure aerosol nucleation and growth under controlled laboratory conditions. Atmospheric aerosols and their effect on clouds are recognised by the IPCC as main source of uncertainty in present radiative forcing and climate models.

Setup

The core of the experiment is a stainless steel chamber of 26m³ volume filled with synthetic air made from liquid nitrogen and liquid oxygen. The chamber atmosphere and pressure is being measured and regulated by various instrumentations. The aerosol chamber can be exposed to an adjustable particle beam simulating GCRs at various altitude or latitude. UV illumination allows photolytic reaction. The chamber contains an electric field cage to control the drift of small ions and charged aerosols.[1] The ionisation produced by cosmic rays can be removed with a strong electric field. Besides, humidity and temperature inside the chamber can be regulated, allowing for fast adiabatic expansion for artificial clouds (compare cloud chamber) or experiments on ice microphysics. According to Kirkby "the level of cleanliness and control in a laboratory experiment is at the limit of current technology, and CERN know-how has been crucial for CLOUD being the first experiment to achieve this performance."[3]

Results

CERN posted a 2009 progress report on the CLOUD project.[4] J. Kirkby (2009) reviews developments in the CERN CLOUD project and planned tests. He describes cloud nucleation mechanisms which appear energetically favourable and depend on GCRs.[5][6]

On 24 August 2011, preliminary research published in the journal Nature showed there was a connection between Cosmic Rays and aerosol nucleation. Kirkby went on to say in the definitive CERN press Release "Ion‐enhancement is particularly pronounced in the cool temperatures of the mid‐troposphere and above, where CLOUD has found that sulphuric acid and water vapour can nucleate without the need for additional vapours.[7]

The first CLOUD experiments showed that sulphuric acid (derived from sulphur dioxide, for which fossil fuels are the predominant source) as such has a much smaller effect than had been assumed. In 2014, CLOUD researchers presented newer experimental results showing an interaction between oxidised biogenic vapours (e.g., alpha-pinene emitted by trees) and sulphuric acid. Ions produced in the atmosphere by galactic cosmic rays enhance the formation rate of these particles significantly, provided the concentrations of sulphuric acid and oxidised organic vapours are quite low. This new process may account for seasonal variations in atmospheric aerosol particles, which are being related to higher global tree emissions in the northern hemisphere summer.[3]

Besides biogenic vapours produced by plants, another class of trace vapours, amines have been shown by CLOUD to cluster with sulphuric acid to produce new aerosol particles in the atmosphere. These are found close to their primary sources, e.g. animal husbandry, while alpha-pinene is generally found over landmasses. The experiments show that sulfuric acid and oxidized organic vapors at low concentrations reproduce suitable particle nucleation rates. The nucleation mechanism used on global aerosol models yields a photochemically and biologically driven seasonal cycle of particle concentrations and cloud formation in good agreement with observations. CLOUD insofar allows to explain a large fraction of cloud seeds in the lower atmosphere involving sulphuric acid and biogenic aerosols.[8] CLOUD researchers note that cosmic rays have little influence on the formation of sulphuric acid–amine particle formation: "The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates."[9] This result does not support the hypothesis that cosmic rays significantly affect climate, although a CERN press release states that neither does it "rule out a role for cosmic radiation" in climate.[10]

Dunne et al. (2016) in charge of the interpretation and modelling of the results of the CLOUD experiment have published in the journal Science an article making the point after 10 years of research at CERN.[11] They have built a global model of aerosol formation using extensive laboratory-measured nucleation rates involving sulfuric acid, ammonia, ions and organic compounds. Their simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds in addition to sulfuric acid.

They conclude the abstract of their paper by stating that "A significant fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied variations in cosmic ray intensity do not significantly affect climate via nucleation in the present-day atmosphere".

External links

References

  1. 1 2 CLOUD official website
  2. CLOUD experiment provides unprecedented insight into cloud formation, CERN
  3. 1 2 "CERN experiment sheds new light on cloud formation | CERN". home.cern. Dan Noyes. 16 May 2014. Retrieved 2015-12-02.
  4. 2009 Progress report on PS215/CLOUD Kirkby, Jasper, The CLOUD Collaboration, CERN, Geneva, SPS and PS Experiments Committee, CERN-SPSC-2010-013, April 7, 2010
  5. Cosmic Rays and Climate Video Jasper Kirkby, CERN Colloquium, 4 June 2009
  6. Cosmic Rays and Climate Presentation Jasper Kirkby, CERN Colloquium, 4 June 2009
  7. Kirkby, Jasper; Curtius, Joachim; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C.; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R.; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H.; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E.; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M.; Carslaw, Kenneth S.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku (2011-08-25). "Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation". Nature. 476 (7361): 429–433. doi:10.1038/nature10343. ISSN 0028-0836. Retrieved 2016-12-04.
  8. Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E.; Dommen, Josef; Ortega, Ismael K.; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico (2014-05-16). "Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles". Science. 344 (6185): 717–721. Bibcode:2014Sci...344..717R. doi:10.1126/science.1243527. ISSN 0036-8075. PMID 24833386.
  9. Almeida et al. (2013) Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 502:359-363. At http://www.readcube.com/articles/10.1038/nature12663
  10. http://press.web.cern.ch/press-releases/2013/10/cerns-cloud-experiment-shines-new-light-climate-change
  11. Dunne, E. M.; Gordon, H.; Kurten, A.; Almeida, J.; Duplissy, J.; Williamson, C.; Ortega, I. K.; Pringle, K. J.; Adamov, A.; Baltensperger, U.; Barmet, P.; Benduhn, F.; Bianchi, F.; Breitenlechner, M.; Clarke, A.; Curtius, J.; Dommen, J.; Donahue, N. M.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Guida, R.; Hakala, J.; Hansel, A.; Heinritzi, M.; Jokinen, T.; Kangasluoma, J.; Kirkby, J.; Kulmala, M.; Kupc, A.; Lawler, M. J.; Lehtipalo, K.; Makhmutov, V.; Mann, G.; Mathot, S.; Merikanto, J.; Miettinen, P.; Nenes, A.; Onnela, A.; Rap, A.; Reddington, C. L. S.; Riccobono, F.; Richards, N. A. D.; Rissanen, M. P.; Rondo, L.; Sarnela, N.; Schobesberger, S.; Sengupta, K.; Simon, M.; Sipila, M.; Smith, J. N.; Stozkhov, Y.; Tome, A.; Trostl, J.; Wagner, P. E.; Wimmer, D.; Winkler, P. M.; Worsnop, D. R.; Carslaw, K. S. (2016-12-02). "Global atmospheric particle formation from CERN CLOUD measurements". Science. 354 (6316): 1119–1124. doi:10.1126/science.aaf2649. ISSN 0036-8075. Retrieved 2016-12-04.
This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.