Bonse's inequality
In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pn, pn+1 are the smallest n + 1 prime numbers and n ≥ 4, then
Notes
- ↑ Bonse, H. (1907). "Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung". Archiv der Mathematik und Physik. 3 (12): 292–295.
References
- Uspensky, J. V.; Heaslet, M. A. (1939). Elementary Number Theory. New York: McGraw Hill. p. 87.
- Zhang, Shaohua (2009). "A new inequality involving primes". arXiv:0908.2943v1.
This article is issued from Wikipedia - version of the 5/16/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.