Aurifeuillean factorization
In number theory, an aurifeuillean factorization, or aurifeuillian factorization, named after Léon-François-Antoine Aurifeuille, is a special type of algebraic factorization that comes from non-trivial factorizations of cyclotomic polynomials over the integers.[1] Although cyclotomic polynomials themselves are irreducible over the integers, when restricted to particular integer values they may have an algebraic factorization, as in the examples below.
Examples
- Numbers of the form have the following aurifeuillean factorization:[2]
- Numbers of the form or , where with square-free , have aurifeuillean factorization if and only if one of the following conditions holds:
- and
- and
- Thus, when with square-free , and is congruent to mod , then if is congruent to 1 mod 4, have aurifeuillean factorization, otherwise, have aurifeuillean factorization.
- When the number is of a particular form (the exact expression varies with the base), Aurifeuillian factorization may be used, which gives a product of two or three numbers. The following equations give Aurifeuillian factors for the Cunningham project bases as a product of F, L and M:[3]
- If we let L = C − D, M = C + D, the Aurifeuillian factorizations for bn ± 1 with the bases 2 ≤ b ≤ 24 (perfect powers excluded, since a power of bn can also be regarded as a power of b) are: (for the coefficients of the polynomials for all square-free bases up to 199, see [4])
- (Number = F * (C − D) * (C + D) = F * L * M)
-
b Number (C − D) * (C + D) = L * M F C D 2 24k + 2 + 1 1 22k + 1 + 1 2k + 1 3 36k + 3 + 1 32k + 1 + 1 32k + 1 + 1 3k + 1 5 510k + 5 - 1 52k + 1 - 1 54k + 2 + 3(52k + 1) + 1 53k + 2 + 5k + 1 6 612k + 6 + 1 64k + 2 + 1 64k + 2 + 3(62k + 1) + 1 63k + 2 + 6k + 1 7 714k + 7 + 1 72k + 1 + 1 76k + 3 + 3(74k + 2) + 3(72k + 1) + 1 75k + 3 + 73k + 2 + 7k + 1 10 1020k + 10 + 1 104k + 2 + 1 108k + 4 + 5(106k + 3) + 7(104k + 2)
+ 5(102k + 1) + 1107k + 4 + 2(105k + 3) + 2(103k + 2)
+ 10k + 111 1122k + 11 + 1 112k + 1 + 1 1110k + 5 + 5(118k + 4) - 116k + 3
- 114k + 2 + 5(112k + 1) + 1119k + 5 + 117k + 4 - 115k + 3
+ 113k + 2 + 11k + 112 126k + 3 + 1 122k + 1 + 1 122k + 1 + 1 6(12k) 13 1326k + 13 - 1 132k + 1 - 1 1312k + 6 + 7(1310k + 5) + 15(138k + 4)
+ 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 11311k + 6 + 3(139k + 5) + 5(137k + 4)
+ 5(135k + 3) + 3(133k + 2) + 13k + 114 1428k + 14 + 1 144k + 2 + 1 1412k + 6 + 7(1410k + 5) + 3(148k + 4)
- 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 11411k + 6 + 2(149k + 5) - 147k + 4
- 145k + 3 + 2(143k + 2) + 14k + 115 1530k + 15 + 1 1514k + 7 - 1512k + 6 + 1510k + 5
+ 154k + 2 - 152k + 1 + 1158k + 4 + 8(156k + 3) + 13(154k + 2)
+ 8(152k + 1) + 1157k + 4 + 3(155k + 3) + 3(153k + 2)
+ 15k + 117 1734k + 17 - 1 172k + 1 - 1 1716k + 8 + 9(1714k + 7) + 11(1712k + 6)
- 5(1710k + 5) - 15(178k + 4) - 5(176k + 3)
+ 11(174k + 2) + 9(172k + 1) + 11715k + 8 + 3(1713k + 7) + 1711k + 6
- 3(179k + 5) - 3(177k + 4) + 175k + 3
+ 3(173k + 2) + 17k + 118 184k + 2 + 1 1 182k + 1 + 1 6(18k) 19 1938k + 19 + 1 192k + 1 + 1 1918k + 9 + 9(1916k + 8) + 17(1914k + 7)
+ 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4)
+ 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 11917k + 9 + 3(1915k + 8) + 5(1913k + 7)
+ 7(1911k + 6) + 7(199k + 5) + 7(197k + 4)
+ 5(195k + 3) + 3(193k + 2) + 19k + 120 2010k + 5 - 1 202k + 1 - 1 204k + 2 + 3(202k + 1) + 1 10(203k + 1) + 10(20k) 21 2142k + 21 - 1 2118k + 9 + 2116k + 8 + 2114k + 7
- 214k + 2 - 212k + 1 - 12112k + 6 + 10(2110k + 5) + 13(218k + 4)
+ 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 12111k + 6 + 3(219k + 5) + 2(217k + 4)
+ 2(215k + 3) + 3(213k + 2) + 21k + 122 2244k + 22 + 1 224k + 2 + 1 2220k + 10 + 11(2218k + 9) + 27(2216k + 8)
+ 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5)
+ 21(228k + 4) + 33(226k + 3) + 27(224k + 2)
+ 11(222k + 1) + 12219k + 10 + 4(2217k + 9) + 7(2215k + 8)
+ 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5)
+ 6(227k + 4) + 7(225k + 3) + 4(223k + 2)
+ 22k + 123 2346k + 23 + 1 232k + 1 + 1 2322k + 11 + 11(2320k + 10) + 9(2318k + 9)
- 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6)
+ 25(2310k + 5) - 15(238k + 4) - 19(236k + 3)
+ 9(234k + 2) + 11(232k + 1) + 12321k + 11 + 3(2319k + 10) - 2317k + 9
- 5(2315k + 8) + 2313k + 7 + 7(2311k + 6)
+ 239k + 5 - 5(237k + 4) - 235k + 3
+ 3(233k + 2) + 23k + 124 2412k + 6 + 1 244k + 2 + 1 244k + 2 + 3(242k + 1) + 1 12(243k + 1) + 12(24k) - (See [5] for more information (square-free bases up to 199))
- Numbers of the form have the following aurifeuillean factorization:
- Lucas numbers have the following aurifeuillean factorization:[6]
- where is the th Lucas number, is the th Fibonacci number.
History
In 1871, Aurifeuille discovered the factorization of for k = 14 as the following:[2][7]
The second factor is prime, and the factorization of the first factor is .[7] The general form of the factorization was later discovered by Lucas.[2]
References
- ↑ A. Granville, P. Pleasants (2006). "Aurifeuillian factorization" (PDF). Math. Comp. 75: 497–508. doi:10.1090/S0025-5718-05-01766-7.
- 1 2 3 Weisstein, Eric W. "Aurifeuillean Factorization". MathWorld.
- ↑ "Main Cunningham Tables". Retrieved 21 December 2015. At the end of tables 2LM, 3+, 5-, 6+, 7+, 10+, 11+ and 12+ are formulae detailing the Aurifeuillian factorisations.
- ↑ Coefficients of Lucas C,D polynomials for all square-free bases up to 199
- ↑ List of Aurifeuillean factorization
- ↑ Lucas Aurifeuilliean primitive part
- 1 2 Integer Arithmetic, Number Theory – Aurifeuillian Factorizations, Numericana
External links
- Aurifeuillian Factorisation, Colin Barker
- Online factor collection
This article is issued from Wikipedia - version of the 8/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.