Effector (biology)

For use of the term in immunology, see Effector cell.

In biochemistry, an effector molecule is usually a small molecule that selectively binds to a protein and regulates its biological activity. In this manner, effector molecules act as ligands that can increase or decrease enzyme activity, gene expression, or cell signalling. Effector molecules can also directly regulate the activity of some mRNA molecules (riboswitches).

In some cases, proteins can be considered to function as effector molecules, especially in cellular signal transduction cascades.

The term effector is used in other fields of biology. For instance, the effector end of a neuron is the terminus where an axon makes contact with the muscle or organ that it stimulates or suppresses.

Examples of effectors

Allosteric effectors can bind to regulatory proteins involved in RNA transcription in order to change its activity.[1] In this way activator proteins become active to bind to the DNA to promote RNA Polymerase and repressor proteins become inactive and RNA polymerase can bind to the DNA.

Bacterial effector proteins are injected by bacterial cells, usually pathogens, into the cells of their host. The injection is mediated by specialized secretion systems, e.g. the type III secretion system (TTSS or T3SS).[2]

Fungal effectors are secreted by pathogenic or benefacial fungi into and around host cells by invasive hyphae to disable defense components or facilitate colonization. Protein secretion systems in fungi involve the Spitzenkörper.[3]

Plant pathogenic fungi use two distinct effector secretion systems[4] and each secretory pathway is specific to an effector family :

Types of effectors

References

  1. Introduction to genetic analysis (10. ed.). New York, NY: Freeman. pp. 410–411. ISBN 1-4292-7634-7. |first1= missing |last1= in Authors list (help)
  2. Cambronne, E. D.; Roy, C. R. (2006). "Recognition and Delivery of Effector Proteins into Eukaryotic Cells by Bacterial Secretion Systems". Traffic. 7 (8): 929–939. doi:10.1111/j.1600-0854.2006.00446.x. PMID 16734660.
  3. Steinberg, G. (2007). "Hyphal growth: a tale of motors, lipids, and the spitzenkörper". Eukaryotic Cell. 6 (3): 351–360. doi:10.1128/EC.00381-06. PMC 1828937Freely accessible. PMID 17259546.
  4. Giraldo MC; Dagdas YF; Gupta YK; Mentlak TA; Yi M; Martinez-Rocha AL; Saitoh H; Terauchi R; Talbot NJ; Valent B (2013). "Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae". 4. Nat Commun. doi:10.1038/ncomms2996.


This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.