Abel equation
The Abel equation, named after Niels Henrik Abel, is a type of functional equation which can be written in the form
or, equivalently,
and controls the iteration of f.
Equivalence
These equations are equivalent. Assuming that α is an invertible function, the second equation can be written as
Taking x = α−1(y), the equation can be written as
For a function f(x) assumed to be known, the task is to solve the functional equation for the function α−1≡h, possibly satisfying additional requirements, such as α−1(0) = 1.
The change of variables sα(x) = Ψ(x), for a real parameter s, brings Abel's equation into the celebrated Schröder's equation, Ψ(f(x)) = s Ψ(x) .
The further change F(x) = exp(sα(x)) into Böttcher's equation, F(f(x)) = F(x)s.
The Abel equation is a special case of (and easily generalizes to) the translation equation,[1]
e.g., for ,
- . (Observe ω(x,0) = x.)
History
Initially, the equation in the more general form [2] [3] was reported. Even in the case of a single variable, the equation is non-trivial, and admits special analysis.[4] [5][6]
In the case of a linear transfer function, the solution is expressible compactly. [7]
Special cases
The equation of tetration is a special case of Abel's equation, with f = exp.
In the case of an integer argument, the equation encodes a recurrent procedure, e.g.,
and so on,
Solutions
- formal solution : unique (to a constant)[8]
- analytic solutions (Fatou coordinates) = approximation by asymptotic expansion of a function defined by power series in the sectors around parabolic fixed point[9]
Fatou coordinates describe local dynamics of discrete dynamical system near a parabolic fixed point.
See also
References
- ↑ Aczél, János, (1966): Lectures on Functional Equations and Their Applications, Academic Press, reprinted by Dover Publications, ISBN 0486445232 .
- ↑ Abel, N.H. (1826). "Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, ...". Journal für die reine und angewandte Mathematik. 1: 11–15.
- ↑ A. R. Schweitzer (1912). "Theorems on functional equations". Bull. Amer. Math. Soc. 19 (2): 51–106. doi:10.1090/S0002-9904-1912-02281-4.
- ↑ Korkine, A (1882). "Sur un problème d'interpolation", Bull Sci Math & Astron 6(1) 228—242. online
- ↑ G. Belitskii; Yu. Lubish (1999). "The real-analytic solutions of the Abel functional equations" (PDF). Studia Mathematica. 134 (2): 135–141.
- ↑ Jitka Laitochová (2007). "Group iteration for Abel's functional equation". Nonlinear Analysis: Hybrid Systems. 1 (1): 95–102. doi:10.1016/j.nahs.2006.04.002.
- ↑ G. Belitskii; Yu. Lubish (1998). "The Abel equation and total solvability of linear functional equations" (PDF). Studia Mathematica. 127: 81–89.
- ↑ Classifications of parabolic germs and fractal properties of orbits by Maja Resman, University of Zagreb, Croatia
- ↑ Dudko, Artem (2012). Dynamics of holomorphic maps: Resurgence of Fatou coordinates, and Poly-time computability of Julia sets Ph.D. Thesis