31 Aquilae

31 Aquilae
Diagram showing star positions and boundaries of the Aquila constellation and its surroundings


Location of 31 Aquarii (circled)

Observation data
Epoch J2000      Equinox J2000
Constellation Aquila
Right ascension 19h 24m 58.20027s[1]
Declination +11° 56 39.8862[1]
Apparent magnitude (V) 5.16[2]
Characteristics
Spectral type G8 IV[2]
U−B color index +0.42[3]
B−V color index +0.77[2]
Astrometry
Radial velocity (Rv)–100.5[4] km/s
Proper motion (μ) RA: +721.02[1] mas/yr
Dec.: +642.49[1] mas/yr
Parallax (π)65.89 ± 0.26[1] mas
Distance49.5 ± 0.2 ly
(15.18 ± 0.06 pc)
Absolute bolometric
magnitude
 (Mbol)
4.01[5]
Details
Mass1.16 ± 0.07[5] M
Radius1.379 ± 0.042[6] R
Luminosity1.904 ± 0.045[6] L
Surface gravity (log g)4.18 ± 0.03[5] cgs
Temperature5,510 ± 90[2] K
Metallicity [Fe/H]+0.37[7] dex
Age4.5 ± 0.2[5] Gyr
Other designations
BD+11 3833, FK5 1503, HD 182572, GJ 759, NLTT 47763, HIP 95447, HR 7373, LFT 1477, LHS 3463, LTT 15668, NSV 11994, SAO 104807.[8]

31 Aquilae (abbreviated 31 Aql) is a star in the equatorial constellation of Aquila. 31 Aquilae is its Flamsteed designation though it also bears the Bayer designation b Aquilae. This star has an apparent visual magnitude of 5.16 and is 49.5 light years from Earth. It has no known companions.

Properties

31 Aquilae has an apparent visual magnitude of 5.16,[2] making it bright enough to be seen with the naked eye in dark skies. The annual parallax shift of 65.89 mas[1] yields a distance estimate of 49.5 light-years (15.2 parsecs) from Earth. It is a variable star with a magnitude change of less than 0.02.[5]

With a stellar classification of G8 IV,[2] the luminosity class of IV indicates this is a subgiant star. Compared to the Sun, it has 116%[5] of the mass and 138%[6] of the radius. It is radiating nearly double[6] the luminosity of the Sun from its outer atmosphere at an effective temperature of 5,510 K,[2] giving it the yellow hue of an G-type star.[9] Its age is probably similar to NGC 188, the oldest open cluster known, which was calculated to be over 5 billion years. For its age, it is surprisingly rich in elements other than hydrogen or helium, contrary to common assumptions that the oldest stars should be metal-poor.

No certain substellar companion has been detected so far around 31 Aquilae. McDonald Observatory team has set limits to the presence of one or more planets [10] around 31 Aquilae with masses between 0.22 and 1.9 Jupiter masses and average separations spanning between 0.05 and 5.2 Astronomical Units.

Optical companions

The following stars are optical companions that are coincidentally aligned near the line of sight to 31 Aquilae.

Companion HD 231345 BD+11 3833C
Right ascension 19h 24m 51.8595s 19h 24m 50.8s
Declination +11° 57 14.692 +11° 57 36
Magnitude 8.56 10.6
Spectral type G0
Reference Simbad Simbad

References

  1. 1 2 3 4 5 6 van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752Freely accessible, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357.
  2. 1 2 3 4 5 6 7 Malagnini, M. L.; Morossi, C. (November 1990), "Accurate absolute luminosities, effective temperatures, radii, masses and surface gravities for a selected sample of field stars", Astronomy and Astrophysics Supplement Series, 85 (3): 1015–1019, Bibcode:1990A&AS...85.1015M.
  3. Johnson, H. L.; et al. (1966), "UBVRIJKL photometry of the bright stars", Communications of the Lunar and Planetary Laboratory, 4 (99), Bibcode:1966CoLPL...4...99J.
  4. Wielen, R.; et al. (1999), Sixth Catalogue of Fundamental Stars (FK6). Part I. Basic fundamental stars with direct solutions (35), Astronomisches Rechen-Institut Heidelberg, Bibcode:1999VeARI..35....1W.
  5. 1 2 3 4 5 6 Trevisan, M.; et al. (November 2011), "Analysis of old very metal rich stars in the solar neighbourhood", Astronomy & Astrophysics, 535: A42, arXiv:1109.6304Freely accessible, Bibcode:2011A&A...535A..42T, doi:10.1051/0004-6361/201016056. See Table 13.
  6. 1 2 3 4 Boyajian, Tabetha S.; et al. (February 2012), "Stellar Diameters and Temperatures. I. Main-sequence A, F, and G Stars", The Astrophysical Journal, 746 (1): 101, arXiv:1112.3316Freely accessible, Bibcode:2012ApJ...746..101B, doi:10.1088/0004-637X/746/1/101. See Table 10.
  7. Soubiran, C.; et al. (2008), "Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants", Astronomy and Astrophysics, 480 (1): 91–101, arXiv:0712.1370Freely accessible, Bibcode:2008A&A...480...91S, doi:10.1051/0004-6361:20078788.
  8. "b Aql -- Variable Star", SIMBAD Astronomical Object Database, Centre de Données astronomiques de Strasbourg, retrieved 2012-07-22.
  9. "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, retrieved 2012-01-16
  10. Detection Limits from the McDonald Observatory Planet Search Program

External links

This article is issued from Wikipedia - version of the 9/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.